Statistics of Feynman integrals in ϕ^4 -theory

Paul-Hermann Balduf University of Waterloo & Perimeter Institute

2024 CAP Congress London, Ontario, May 28, 2024

based on JHEP11 2023.160

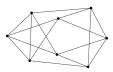
Slides, references, data set etc. available from paulbalduf.com/research

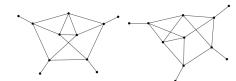
Background

- ▶ Perturbative quantum field theory in flat (Euclidean) $D = 4 2\epsilon$ spacetime.
- ▶ Massless bosonic ϕ^4 -theory

$$\mathcal{L} = rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - rac{\lambda}{4!} \left(\phi^2\right)^2.$$

- \Rightarrow Feynman graphs have 1 type of edge, 1 type of 4-valent vertex.
- ▶ We want to understand "typical properties" of vertex-type Feynman integrals.





Periods in ϕ^4 -theory

Background and Motivation

 \blacktriangleright We consider only *primitive* (=no subdivergences) vertex-type graphs G in $D=4-2\epsilon$. Depend on energy scale $\ell:=\ln\frac{p^2}{u^2}$ in a characteristic way:

$$\mathcal{F}(\mathcal{G}) = \operatorname{const} \cdot \left(rac{1}{\epsilon} rac{\mathcal{P}(\mathcal{G})}{L} - \mathcal{P}(\mathcal{G}) \cdot \ell + \ell ext{-independent terms} + \mathcal{O}(\epsilon)
ight)$$

 \blacktriangleright First Symanzik polynomial ψ_G . Nontrivial part of integral is the *period* [Broadhurst and Kreimer 1995; Schnetz 2010], in parametric form:

$$\mathcal{P}(\mathcal{G}) = \left(\prod_{e \in \mathcal{E}_{\mathcal{G}}} \int\limits_{0}^{\infty} \mathsf{d} \mathsf{a}_{e} \; \right) \, \delta\!\left(1 - \sum_{e=1}^{|\mathcal{E}_{\mathcal{G}}|} \mathsf{a}_{e}
ight) rac{1}{\psi_{\mathcal{G}}^{2}(\{a_{e}\})} \in \mathbb{R}.$$

Why consider periods?

Periods in ϕ^4 -theory

Background and Motivation

 \blacktriangleright We consider only *primitive* (=no subdivergences) vertex-type graphs G in $D=4-2\epsilon$. Depend on energy scale $\ell:=\ln\frac{p^2}{u^2}$ in a characteristic way:

$$\mathcal{F}(\mathcal{G}) = \operatorname{const} \cdot \left(rac{1}{\epsilon} rac{\mathcal{P}(\mathcal{G})}{L} - \mathcal{P}(\mathcal{G}) \cdot \ell + \ell ext{-independent terms} + \mathcal{O}(\epsilon)
ight)$$

 \blacktriangleright First Symanzik polynomial ψ_G . Nontrivial part of integral is the *period* [Broadhurst and Kreimer 1995; Schnetz 2010], in parametric form:

$$\mathcal{P}(\mathcal{G}) = \left(\prod_{e \in \mathcal{E}_{\mathcal{G}}} \int\limits_{0}^{\infty} \mathsf{d} \mathsf{a}_{e} \; \right) \, \delta\!\left(1 - \sum_{e=1}^{|\mathcal{E}_{\mathcal{G}}|} \mathsf{a}_{e}
ight) rac{1}{\psi_{\mathcal{G}}^{2}(\{a_{e}\})} \in \mathbb{R}.$$

- ▶ Why consider periods?
 - 1. Prototypical "simplest possible" honest Feynman integral (no numerator, independent of renormalization scheme, independent of momenta and angles).
 - 2. Their sum is the primitive beta function, conjecturally dominant in MS as $L \to \infty$.

How many graphs are there?

Just generate them all and count...

How many graphs are there?

Just generate them all and count...

Counts and symmetries

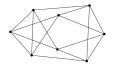
> 1 billion at 15 loops.

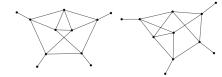
Remark: Many things are known mathematically about "large random graphs". Asymptotically, a large random 4-regular graph either contains multiedges or is primitive.

Primitive
vertex-type graphs
1
1
3
10
44
248
1688
13094
114016
1081529
11048898
120451435
1393614379
17041643034

Symmetries

- Sometimes, the period of non-isomorphic graphs has the same value Schnetz 2010; Panzer 2022; Hu et al. 2022].
- All "decompletions" of the same vacuum graph have the same period





- Planar dual graphs have the same period (this is rare).
- Some other symmetries.

Counts

L	All vertex-type	Vacuum graphs	planar	independent
	decompletions	vacuum grapus	decompletions	periods
3	1	1	1	1
4	1	1	1	1
5	3	2	2	1
6	10	5	5	4
7	44	14	19	9
8	248	49	58	31
9	1,688	227	235	134
10	13,094	1,354	880	819
11	114,016	9,722	3,623	6,197
12	1,081,529	81,305	14,596	55,196
13	11,048,898	755,643	60,172	543,535
14	120,451,435	7,635,677	246,573	5,769,143
15	1,393,614,379	82,698,184	1,015,339	65,117,118

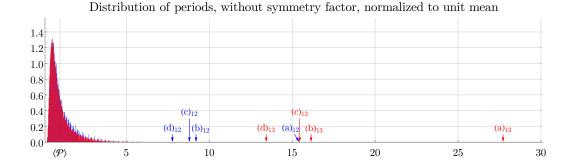
 $[\]Rightarrow$ Millions of independent integrals remain.

Computing periods numerically

- ▶ Periods can be quickly ($\sim 1\text{h/graph}$) computed numerically with new algorithm up to $L \approx 16$ loops [Borinsky 2023; Borinsky, Munch, and Tellander 2023]
- ▶ Use symmetries to improve accuracy and check programs.
- ▶ Computed all graphs including 13 loops, incomplete uniform samples for $L \le 18$. Typical accuracy 4 digits (≈ 100 ppm).
- ▶ $\approx 1.3 \cdot 10^6$ distinct completions (=vacuum graphs) computed, $\approx 33 \cdot 10^6$ decompletions (=vertex graphs) known.

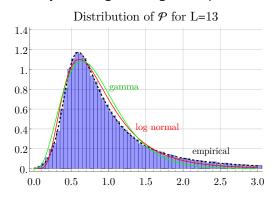
Distribution histogram

- ▶ Most periods are somewhat close to the mean $\langle \mathcal{P} \rangle$
- ▶ There are few, but extreme, outliers. Standard deviation $\sigma(\mathcal{P}) \approx \langle \mathcal{P} \rangle$.
- The pattern of outliers repeats at each loop order, but scaled.



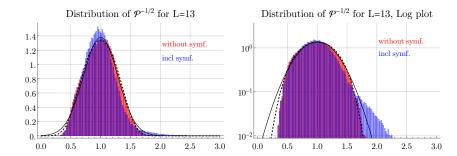
Continuous part of the distribution

- Distribution of uniform (=period value multiplied with symmetry factor, not period sampled proportional to symmetry factor) periods is none of the usual well-known distribution functions.
- Can be modeled empirically with 5 free parameters.
- Distribution is essentially unchanged at higher loop order.



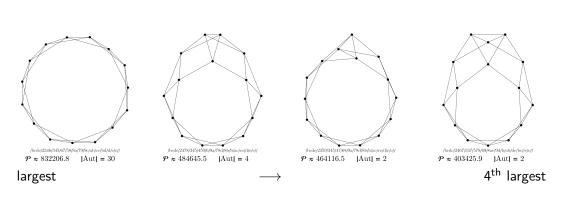
A curious observation

- \blacktriangleright The quantity $\frac{1}{\sqrt{\mathcal{P}}}$ is almost normally distributed.
- I don't know why.



Which ones are the outliers?

- ▶ The Zigzag graphs (=(1,2)-circulants) and their friends.
- ightharpoonup They look "symmetric", but that's deceptive, overall only weak correlation between $\mathcal P$ and symmetry factor.



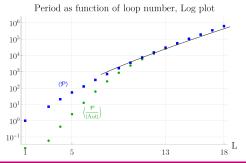
Behavior of the mean

Background and Motivation

▶ Leading asymptotic growth of full beta function in MS from instanton calculation [A. J. McKane, Wallace, and Bonfim 1984; Alan J. McKane 2019] + conjecture that primitive graphs dominate MS + asymptotics of number of graphs [Cvitanović, Lautrup, and Pearson 1978; Borinsky 2017] implies

$$\langle \mathcal{P}
angle \sim \mathcal{C} \cdot \left(rac{3}{2}
ight)^{L+3} \mathcal{L}^{rac{5}{2}}.$$

▶ Matches observed growth, potentially with different constant *C*.



Conclusion

► There are very many Feynman graphs. Obtained counts and asymptotics for numbers, symmetry factors, planarity etc.

Conclusion

- ▶ There are very many Feynman graphs. Obtained counts and asymptotics for numbers, symmetry factors, planarity etc.
- The distribution is largely "smooth" apart from a few extreme outlier graphs.
- Obtained various averages, standard deviations, higher moments, correlation coefficients.
- ▶ Obtained numerical approximation of 18-loop O(N)-symmetric primitive ϕ^4 beta function.

What's that good for?

- ▶ Beta function ⇒ critical exponents for all systems in the same universality class.
- ▶ General understanding of perturbative QFT and divergence of perturbation series.
- Understand accuracy of samples, or of extrapolation of special classes (e.g. planar graphs are not a good proxy for all graphs).
- ▶ Use empirical data for weighted Monte-Carlo sampling of graphs, overcome the problem of large variance (see my talk at Theory Canada / my website).

Thank you!

for staying for the last talk :-)



References I

- Borinsky, Michael (2017). "Renormalized Asymptotic Enumeration of Feynman Diagrams". In: *Annals of Physics* 385, pp. 95–135. DOI: 10.1016/j.aop.2017.07.009.
- (2023). "Tropical Monte Carlo Quadrature for Feynman Integrals". In: Annales de l'Institut Henri Poincaré D 10.4, pp. 635–685. DOI: 10.4171/AIHPD/158. arXiv: 2008.12310. arXiv: 2008.12310.
- Borinsky, Michael, Henrik J. Munch, and Felix Tellander (2023). Tropical Feynman Integration in the Minkowski Regime. DOI: 10.48550/arXiv.2302.08955. arXiv: 2302.08955 [hep-ph, physics:hep-th, physics:math-ph]. arXiv: 2302.08955. preprint.
- Broadhurst, D. J. and D. Kreimer (1995). "Knots and Numbers in ϕ^4 Theory to 7 Loops and Beyond". In: *International Journal of Modern Physics C* 06.04, pp. 519–524. DOI: 10.1142/S012918319500037X. arXiv: hep-ph/9504352. arXiv: hep-ph/9504352.
- Cvitanović, Predrag, B. Lautrup, and Robert B. Pearson (1978). "Number and Weights of Feynman Diagrams". In: *Physical Review D* 18.6, p. 1939. DOI: 10.1103/PhysRevD.18.1939.
- Hu, Simone et al. (2022). "Further Investigations into the Graph Theory of ϕ^4 -Periods and the c_2 Invariant". In: *Annales de l'Institut Henri Poincaré D* 9.3, pp. 473–524. DOI: 10.4171/AIHPD/123.
- McKane, A. J., D. J. Wallace, and O. F. de Alcantara Bonfim (1984). "Non-Perturbative Renormalisation Using Dimensional Regularisation: Applications to the ϵ Expansion". In: *Journal of Physics A: Mathematical and General* 17.9, pp. 1861–1876. DOI: 10.1088/0305-4470/17/9/021.
- McKane, Alan J. (2019). "Perturbation Expansions at Large Order: Results for Scalar Field Theories Revisited". In: *Journal of Physics A: Mathematical and Theoretical* 52.5, p. 055401. DOI: 10.1088/1751-8121/aaf768. arXiv: 1807.00656 [hep-th]. arXiv: 1807.00656.

References II

```
Panzer, Erik (2022). "Hepp's Bound for Feynman Graphs and Matroids". In: Annales de l'Institut Henri Poincaré D 10.1, pp. 31–119. DOI: 10.4171/aihpd/126.
```

Schnetz, Oliver (2010). "Quantum Periods: A Census of ϕ^4 -Transcendentals". In: Commun.Num.Theor.Phys. 4, pp. 1–48. arXiv: 0801.2856. arXiv: 0801.2856.