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Background

▶ Perturbative quantum field theory in flat (Euclidean) D = 4− 2ϵ spacetime.

▶ Massless bosonic ϕ4-theory

L =
1

2
∂µϕ∂

µϕ− λ

4!

(
ϕ2

)2
.

⇒ Feynman graphs have 1 type of edge, 1 type of 4-valent vertex.

▶ We want to understand “typical properties” of vertex-type Feynman integrals.
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Periods in ϕ4-theory

▶ We consider only primitive (=no subdivergences) vertex-type graphs G in

D = 4− 2ϵ. Depend on energy scale ℓ := ln p2

µ2 in a characteristic way:

F(G ) = const ·
(
1

ϵ

P(G )

L
− P(G ) · ℓ+ ℓ-independent terms +O(ϵ)

)
▶ First Symanzik polynomial ψG . Nontrivial part of integral is the period

[Broadhurst and Kreimer 1995; Schnetz 2010], in parametric form:

P(G ) =

 ∏
e∈EG

∞∫
0

dae

 δ

1−
|EG |∑
e=1

ae

 1

ψ2
G ({ae})

∈ R.

▶ Why consider periods?

1. Prototypical “simplest possible” honest Feynman integral (no numerator,
independent of renormalization scheme, independent of momenta and angles).

2. Their sum is the primitive beta function, conjecturally dominant in MS as L → ∞.
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How many graphs are there?

Just generate them all and count...

⇒ > 1 billion at 15 loops.

Remark: Many things are known mathemat-
ically about “large random graphs”. Asymp-
totically, a large random 4-regular graph ei-
ther contains multiedges or is primitive.

L
Primitive

vertex-type graphs

3 1
4 1
5 3
6 10
7 44
8 248
9 1688
10 13094
11 114016
12 1081529
13 11048898
14 120451435
15 1393614379
16 17041643034
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Symmetries

▶ Sometimes, the period of non-isomorphic graphs has the same value [Schnetz
2010; Panzer 2022; Hu et al. 2022].

▶ All “decompletions” of the same vacuum graph have the same period

▶ Planar dual graphs have the same period (this is rare).

▶ Some other symmetries.
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Counts

L
All vertex-type
decompletions

Vacuum graphs
planar

decompletions
independent

periods

3 1 1 1 1
4 1 1 1 1
5 3 2 2 1
6 10 5 5 4
7 44 14 19 9
8 248 49 58 31
9 1,688 227 235 134
10 13,094 1,354 880 819
11 114,016 9,722 3,623 6,197
12 1,081,529 81,305 14,596 55,196
13 11,048,898 755,643 60,172 543,535
14 120,451,435 7,635,677 246,573 5,769,143
15 1,393,614,379 82,698,184 1,015,339 65,117,118

⇒ Millions of independent integrals remain.
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Computing periods numerically

▶ Periods can be quickly (∼ 1h/graph) computed numerically with new algorithm
up to L ≈ 16 loops [Borinsky 2023; Borinsky, Munch, and Tellander 2023]

▶ Use symmetries to improve accuracy and check programs.

▶ Computed all graphs including 13 loops, incomplete uniform samples for L ≤ 18.
Typical accuracy 4 digits (≈ 100ppm).

▶ ≈ 1.3 · 106 distinct completions (=vacuum graphs) computed, ≈ 33 · 106
decompletions (=vertex graphs) known.
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Distribution histogram

▶ Most periods are somewhat close to the mean ⟨P⟩
▶ There are few, but extreme, outliers. Standard deviation σ(P) ≈ ⟨P⟩.
▶ The pattern of outliers repeats at each loop order, but scaled.
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Continuous part of the distribution

▶ Distribution of uniform (=period value multiplied with symmetry factor, not period sampled proportional to symmetry

factor) periods is none of the usual well-known distribution functions.

▶ Can be modeled empirically with 5 free parameters.

▶ Distribution is essentially unchanged at higher loop order.

gamma

log normal
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A curious observation

▶ The quantity 1√
P is almost normally distributed.

▶ I don’t know why.

incl symf.
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Which ones are the outliers?

▶ The Zigzag graphs (=(1, 2)-circulants) and their friends.

▶ They look “symmetric”, but that’s deceptive, overall only weak correlation
between P and symmetry factor.

largest −→ 4th largest
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Behavior of the mean
▶ Leading asymptotic growth of full beta function in MS from instanton calculation

[A. J. McKane, Wallace, and Bonfim 1984; Alan J. McKane 2019] + conjecture
that primitive graphs dominate MS + asymptotics of number of graphs
[Cvitanović, Lautrup, and Pearson 1978; Borinsky 2017] implies

⟨P⟩ ∼ C ·
(
3

2

)L+3

L
5
2 .

▶ Matches observed growth, potentially with different constant C .
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Conclusion

▶ There are very many Feynman graphs. Obtained counts and asymptotics for
numbers, symmetry factors, planarity etc.

▶ The distribution is largely “smooth” apart from a few extreme outlier graphs.

▶ Obtained various averages, standard deviations, higher moments, correlation
coefficients.

▶ Obtained numerical approximation of 18-loop O(N)-symmetric primitive ϕ4 beta
function.
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What’s that good for?

▶ Beta function ⇒ critical exponents for all systems in the same universality class.

▶ General understanding of perturbative QFT and divergence of perturbation series.

▶ Understand accuracy of samples, or of extrapolation of special classes (e.g. planar
graphs are not a good proxy for all graphs).

▶ Use empirical data for weighted Monte-Carlo sampling of graphs, overcome the
problem of large variance (see my talk at Theory Canada / my website).
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Thank you!

for staying for the last talk :-)

@paulbalduf@mathstodon.xyz
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