Weighted Monte-Carlo sampling of Feynman graphs in ϕ^4 -theory

Paul-Hermann Balduf, U of Waterloo & Perimeter Institute

Theory Canada, May 24, 2024

based on arXiv 2403.16217 with Kimia Shaban

Slides, references, data set etc. available from paulbalduf.com/research

Background

- ▶ Perturbative quantum field theory in flat (Euclidean) $D = 4 2\epsilon$ spacetime.
- ▶ Massless bosonic ϕ^4 -theory

$$\mathcal{L} = rac{1}{2} \partial_\mu \phi \partial^\mu \phi - rac{\lambda}{4!} ig(\phi^2 ig)^2.$$

- \Rightarrow Feynman graphs have 1 type of edge, 1 type of 4-valent vertex.
- ▶ We want to compute the beta function of this theory.

The beta function in ϕ^4 -theory

► Describes change of the coupling when all energy scales are increased simultaneously. Set ℓ := ln ^{p²}/_{μ²}, where μ arbirary reference. Callan-Symanzik equation for renormalized Green functions G(α, ℓ) Callan 1970; Symanzik 1970:

$$\partial_{\ell} \mathcal{G}(\alpha, \ell) = \Big(\gamma(\alpha) + \beta(\alpha)\alpha\partial_{\alpha}\Big) \mathcal{G}(\alpha, \ell).$$

- ► Related to running coupling $\alpha(\mu)$ and coupling counterterm Z_{α} via $\beta(\alpha) = \alpha \mu \frac{\partial}{\partial \mu} \ln \alpha(\mu, \alpha_0) = \frac{-\epsilon}{\partial_{\alpha} \ln(\alpha Z_{\alpha}(\alpha, \epsilon))}$.
- Computed perturbatively from sum of vertex-type L-loop Feynman integrals $\mathcal{F}(G)$,

$$\beta(\alpha) = -2 \sum_{\text{4-valent graphs } G} (-\alpha)^{L+1} \frac{\partial_{\ell} \mathcal{F}(G)}{|\mathsf{Aut}(G)|}.$$

Periods in ϕ^4 -theory

• We consider only *primitive* (=no subdivergences) graphs G in $D = 4 - 2\epsilon$.

$$\mathcal{F}(G) = \operatorname{const} \cdot \left(\frac{1}{\epsilon} \frac{\mathcal{P}(G)}{L} - \mathcal{P}(G) \cdot \ell + \ell \text{-independent terms} + \mathcal{O}(\epsilon) \right)$$

► First Symanzik polynomial ψ_G. Nontrivial part of integral is the *period* [Broadhurst and Kreimer 1995; Schnetz 2010]

$$\mathcal{P}(G) = \left(\prod_{e \in E_G} \int_0^\infty \mathsf{d} a_e\right) \delta\left(1 - \sum_{e=1}^{|E_G|} a_e\right) \frac{1}{\psi_G^2(\{a_e\})} \in \mathbb{R}.$$

▶ With the period, $\partial_{\ell} \mathcal{F}(G) = \mathcal{P}(G)$. The *primitive* contribution to the beta function is

$$\beta^{\mathsf{prim}}(\alpha) = 2 \sum_{\text{primitive 4-valent } G} (-\alpha)^{L+1} \frac{\mathcal{P}(G)}{|\mathsf{Aut}(G)|}.$$

Computing the primitive beta function

- ▶ Periods can be quickly (~ 1h/graph) computed numerically with new algorithm up to L ≈ 16 loops [Borinsky 2023; Borinsky, Munch, and Tellander 2023]
- Can exploit various symmetries, only a subset is truly independent [Schnetz 2010; Panzer 2022; Hu et al. 2022]
- ▶ 2 Problems (see my talk on May 28):
 - ► Number of graphs grows factorially, 750k at 13 loops, 950M at 16 loops ⇒ impossible to compute all of them, need (random) sample, *Monte Carlo* algorithm.
 - Standard deviation of distribution is large, σ(P) ≈ ⟨P⟩ ⇒ sample has large statistical uncertainty, at sample size n

$$\Delta_{\mathsf{samp}}\mathcal{P} = \frac{1}{\sqrt{n}}\sigma(\mathcal{P}), \quad \Rightarrow \quad \frac{\Delta_{\mathsf{samp}}\mathcal{P}}{\mathcal{P}} \approx \frac{1}{\sqrt{n}}.$$

E.g. for 3 significant digits ($\Delta_{samp} \leq 0.1\%$) we need sample size $n \approx 10^6$.

► Solution: Importance sampling of periods.

Importance sampling for periods

- \blacktriangleright Idea of importance sampling: If we know a function $\overline{\mathcal{P}}$ which approximates the period and $\overline{\mathcal{P}}$ is fast to compute, then:
 - 1. Evaluate $\langle \bar{\mathcal{P}} \rangle$ in a large sample of size $N_s \cdot n$.
 - 2. Generate a smaller random sample S of n graphs weighted proportional to $\overline{\mathcal{P}}$. Evaluate $\left< \frac{\mathcal{P}}{\overline{\mathcal{P}}} \right>_{\mathcal{S}}$ in this sample. 3. Law of conditional probability:

• Total error is small if simultaneously $\delta := \sigma\left(\frac{\mathcal{P}}{\overline{\mathcal{P}}}\right)$ is small (high accuracy of approximation) and $N_s \gg 1$ (approximation faster than numerical integration)

Approximation functions

We examined \approx 150 different graph-theoretical quantities empirically, for a data set [Balduf 2023, freely available] of \approx 1.5*M* periods with *L* \leq 18.

Recall that at fixed L, all graphs have the same number of edges and vertices and are 4-regular.

Average vertex distance

- ► Count number of edges between all pairs of vertices, take average.
- ▶ Relatively fast to count, clearly correlated, but low accuracy $\delta \approx 30\%$.

Average resistance (Kirchhoff index)

- Assign unit electrical resistance to every edge. Resistance r_{vi}, v_j between vertices v_i and v_j.
- ► *Kirchhoff index* = average resistance

$$R(G) := \frac{2}{|V_G|(|V_G|-1)} \sum_{v_1 < v_2 \in V_G} r_{v_1, v_2}.$$

► Extremely fast to compute due to matrix linear algebra operations (~ 100µs per graph)

Average resistance

► Resistance approximation reaches $\sigma\left(\frac{\mathcal{P}}{\overline{\mathcal{P}}}\right) =: \delta \approx 5\%.$

- ▶ $n_j(G)$ the total number of cycles of length $j \in \mathbb{N}$ contained in a graph G.
- ▶ $n_1 = n_2 = 0$, $n_3 =$ number of triangles, $n_4 =$ number of squares, ...

- ▶ $n_j(G)$ the total number of cycles of length $j \in \mathbb{N}$ contained in a graph G.
- ▶ $n_1 = n_2 = 0$, $n_3 =$ number of triangles, $n_4 =$ number of squares, ...
- ▶ Triangles are a mediocre approximation, \mathcal{P} almost uncorrelated with n_j for $j \ge 4$.

- ▶ Triangles are a mediocre approximation, P almost uncorrelated with n_j for $j \ge 4$.
- ▶ But: n_3 and n_4 together are good!
- \blacktriangleright \Rightarrow Use multi-linear function.

$$\ln \bar{\mathcal{P}} := f_0 + \sum_{j=3}^{j_{\max}} f_j \frac{2j \cdot n_j}{3^j}.$$

► Approximation gets better with increasing j_{max} . Saturated at $j \approx 10$, accuracy $\delta \approx 2\%$.

Cuts

- ▶ A (minimal) cut $C \subseteq E_G$ separates the grap into exactly 2 connected components. c_j number of *j*-edge cuts. Consider multi-linear model of $\ln(c_j)$.
- $\blacktriangleright\,$ Can combine cuts and cycles. Reach $\delta\approx 1.2\%$ for all loop orders.

Hepp bound.

- ► Hepp bound H(G) [Hepp 1966; Panzer 2022] arises from "tropicalization" of period integral upon sector decomposition.
- Strongly correlated with period. Polynomial function, combined with edge-cuts $\ln(c_i)$, gives $\delta \approx 0.2\%$.
- ► Computation requires iteration over *all* subgraphs (and/or caching).

Martin invariant

- ▶ kth order Martin invariant M^[k] [Panzer and Yeats 2023] is derivative of O(N) symmetry factor at N = −2 for a graph where every edge is replaced by k parallel edges.
- Linear function of ln M^[1] gives δ ≈ 4%, higher M^[k] are much better. kth-order polynomial of M^[k] can get very accurate when cobined with cuts ln(c_j), reach δ ≪ 0.1%.
- ▶ Like Hepp, requires recurrence over decompositions and caching.

Machine learning models

- ► So far: Hand-picked, physically inspired quantities.
- ► Linear regression of *all* quantities simultaneously gives δ ≈ 0.1%. Quadratic even better. But: High computational cost.

Work by Kimia Shaban

Machine learning models

- ► So far: Hand-picked, physically inspired quantities.
- Linear regression of *all* quantities simultaneously gives δ ≈ 0.1%. Quadratic even better.
 But: High computational cost.
- Trained artificial neural networks (graph convolutional network, graphSAGE) using just the graph as input.
- Not accurate/reproducible enough for Monte Carlo sampling, but very fast once trained.
- Machine learning challenge: The graph *completely* determines the period (perfect accuracy is possible for a clever enough model). Data set freely available, see paulbalduf.com/research.

Results

Work by Kimia Shaban

Speed vs. accuracy

• Recall: Sampling accuracy scales as $\frac{1}{\sqrt{n}}\delta$, where $n \propto \frac{1}{t_a}$. \Rightarrow equivalent approximations on lines $\delta \propto t_a^{-\frac{1}{2}}$.

Speed vs. accuracy

- Recall: Sampling accuracy scales as $\frac{1}{\sqrt{n}}\delta$, where $n \propto \frac{1}{t_a}$. \Rightarrow equivalent approximations on lines $\delta \propto t_a^{-\frac{1}{2}}$.
- Most models lie on δ ∝ t_a⁻¹. I.e. the more accurate models are "more than worth" their extra time. Still, Hepp and Martin are too slow for L > 14.
- \blacktriangleright \Rightarrow Cut & Cycle model is the most useful one for Monte-Carlo sampling.

Weighted sampling implementation details

- Generate random graphs, check for primitivity, compute "cuts & cycles" prediction P
- ▶ Metropolis-Hastings sampling algorithm: Have graph G₁. Generate x ∈ [0, 1] uniformly. If <u>P</u>(G₁) > x, accept G₂, else keep G₁.
- ▶ In our case, sampling factor $N_s \approx 5000$ approximations per integration was ideal to balance accuracy of sampling $\left\langle \frac{\mathcal{P}}{\bar{\mathcal{P}}} \right\rangle$ vs $\left\langle \bar{\mathcal{P}} \right\rangle$ sampling.
- ► Distribute 100 threads on prediction and integration dynamically.

Example results: Primitive beta function for L = 14

▶ Reached 120ppm standard deviation after 24k CPU core h (< 2 weeks walltime).

▶ Previous work with uniform random sampling took 400k CPU core h for 1063ppm.

► ⇒ Weighted sampling is ≈ 1000× faster than uniform random sampling, or reaches ≈ 35× the accuracy at the same runtime.

Conclusion

- ► Feynman integrals are correlated to various properties of the graph.
- ► Some correlations are conceptually interesting (e.g. resistance). Often, ln(P) is a multi-linear function.
- ▶ To approximate period \mathcal{P} , we can reach approximation uncertainty $\delta < 2\%$ easily, $\delta \approx 0.1\%$ with some effort.
- ▶ Weighted sampling reduces the time for numerically computing the primitive beta function by roughly a factor 10^3 , but only for $L \ge 13$ loops (otherwise, just compute all graphs).

Thank you!

References I

Balduf, Paul-Hermann (2023). "Statistics of Feynman Amplitudes in \u03c6⁴-Theory". In: Journal of High Energy Physics 2023.11, p. 160. DOI: 10.1007/JHEP11(2023)160.

- Borinsky, Michael (2023). "Tropical Monte Carlo Quadrature for Feynman Integrals". In: Annales de l'Institut Henri Poincaré D 10.4, pp. 635–685. DOI: 10.4171/AIHPD/158. arXiv: 2008.12310. arXiv: 2008.12310.
- Borinsky, Michael, Henrik J. Munch, and Felix Tellander (2023). Tropical Feynman Integration in the Minkowski Regime. DOI: 10.48550/arXiv.2302.08955. arXiv: 2302.08955 [hep-ph, physics:hep-th, physics:math-ph]. arXiv: 2302.08955. preprint.
- Broadhurst, D. J. and D. Kreimer (1995). "Knots and Numbers in ϕ^4 Theory to 7 Loops and Beyond". In: International Journal of Modern Physics C 06.04, pp. 519–524. DOI: 10.1142/S012918319500037X. arXiv: hep-ph/9504352. arXiv: hep-ph/9504352.
- Callan, Curtis G. (1970). "Broken Scale Invariance in Scalar Field Theory". In: *Physical Review D* 2.8, pp. 1541–1547. DOI: 10.1103/PhysRevD.2.1541.
- Hepp, Klaus (1966). "Proof of the Bogoliubov-Parasiuk Theorem on Renormalization". In: *Communications in Mathematical Physics* 2.1, pp. 301–326. DOI: 10.1007/BF01773358.
- Hu, Simone et al. (2022). "Further Investigations into the Graph Theory of φ⁴-Periods and the c₂ Invariant". In: Annales de l'Institut Henri Poincaré D 9.3, pp. 473–524. DOI: 10.4171/AIHPD/123.
 Panzer, Erik (2022). "Hepp's Bound for Feynman Graphs and Matroids". In: Annales de l'Institut Henri Poincaré D 10.1, pp. 31–119. DOI: 10.4171/aihpd/126.

References II

- Panzer, Erik and Karen Yeats (2023). Feynman Symmetries of the Martin and c₂ Invariants of Regular Graphs. DOI: 10.48550/arXiv.2304.05299. arXiv: 2304.05299 [hep-th, physics:math-ph]. arXiv: 2304.05299. preprint.
- Schnetz, Oliver (2010). "Quantum Periods: A Census of φ⁴-Transcendentals". In: *Commun.Num.Theor.Phys.* 4, pp. 1–48. arXiv: 0801.2856. arXiv: 0801.2856.
 Symanzik, Kurt (1970). "Small Distance Behaviour in Field Theory and Power Counting". In: *Communications in Mathematical Physics* 18.3, pp. 227–246. DOI: 10.1007/BF01649434.