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Background and Motivation Approximation functions Results

Background

▶ Perturbative quantum field theory in flat (Euclidean) D = 4− 2ϵ spacetime.

▶ Massless bosonic ϕ4-theory

L =
1

2
∂µϕ∂

µϕ− λ

4!

(
ϕ2

)2
.

⇒ Feynman graphs have 1 type of edge, 1 type of 4-valent vertex.

▶ We want to compute the beta function of this theory.
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The beta function in ϕ4-theory

▶ Describes change of the coupling when all energy scales are increased

simultaneously. Set ℓ := ln p2

µ2 , where µ arbirary reference. Callan-Symanzik

equation for renormalized Green functions G(α, ℓ) Callan 1970; Symanzik 1970:

∂ℓG(α, ℓ) =
(
γ(α) + β(α)α∂α

)
G(α, ℓ).

▶ Related to running coupling α(µ) and coupling counterterm Zα via
β(α) = αµ ∂

∂µ lnα(µ, α0) =
−ϵ

∂α ln(αZα(α,ϵ))
.

▶ Computed perturbatively from sum of vertex-type L-loop Feynman integrals F(G ),

β(α) = −2
∑

4-valent graphs G

(−α)L+1 ∂ℓF(G )

|Aut(G )|
.

Paul-Hermann Balduf, Waterloo & PI Weighted sampling of Feynman graphs 3

https://paulbalduf.com/research


Background and Motivation Approximation functions Results

Periods in ϕ4-theory
▶ We consider only primitive (=no subdivergences) graphs G in D = 4− 2ϵ.

F(G ) = const ·
(
1

ϵ

P(G )

L
− P(G ) · ℓ+ ℓ-independent terms +O(ϵ)

)
▶ First Symanzik polynomial ψG . Nontrivial part of integral is the period

[Broadhurst and Kreimer 1995; Schnetz 2010]

P(G ) =

 ∏
e∈EG

∞∫
0

dae

 δ

1−
|EG |∑
e=1

ae

 1

ψ2
G ({ae})

∈ R.

▶ With the period, ∂ℓF(G ) = P(G ). The primitive contribution to the beta
function is

βprim(α) = 2
∑

primitive 4-valent G

(−α)L+1 P(G )

|Aut(G )|
.
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Computing the primitive beta function

▶ Periods can be quickly (∼ 1h/graph) computed numerically with new algorithm
up to L ≈ 16 loops [Borinsky 2023; Borinsky, Munch, and Tellander 2023]

▶ Can exploit various symmetries, only a subset is truly independent [Schnetz 2010;
Panzer 2022; Hu et al. 2022]

▶ 2 Problems (see my talk on May 28):

▶ Number of graphs grows factorially, 750k at 13 loops, 950M at 16 loops ⇒
impossible to compute all of them, need (random) sample, Monte Carlo algorithm.

▶ Standard deviation of distribution is large, σ(P) ≈ ⟨P⟩ ⇒ sample has large
statistical uncertainty, at sample size n

∆sampP =
1√
n
σ(P), ⇒ ∆sampP

P
≈ 1√

n
.

E.g. for 3 significant digits (∆samp ≤ 0.1%) we need sample size n ≈ 106.

▶ Solution: Importance sampling of periods.
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Importance sampling for periods

▶ Idea of importance sampling: If we know a function P̄ which approximates the
period and P̄ is fast to compute, then:

1. Evaluate
〈
P̄
〉
in a large sample of size Ns · n.

2. Generate a smaller random sample S of n graphs weighted proportional to P̄.
Evaluate

〈P
P̄

〉
S
in this sample.

3. Law of conditional probability:

⟨P⟩ =
〈
P̄
〉︸︷︷︸

large sample, fast

·
〈
P
P̄

〉
S︸ ︷︷ ︸

small sample, slow

▶ Total error is small if simultaneously δ := σ
(
P
P̄

)
is small (high accuracy of

approximation) and Ns ≫ 1 (approximation faster than numerical integration)
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Approximation functions

We examined ≈ 150 different graph-theoretical quantities empirically, for a data set
[Balduf 2023, freely available] of ≈ 1.5M periods with L ≤ 18.

Recall that at fixed L, all graphs have the same number of edges and vertices and are
4-regular.
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Average vertex distance

▶ Count number of edges between all pairs of vertices, take average.

▶ Relatively fast to count, clearly correlated, but low accuracy δ ≈ 30%.
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Average resistance (Kirchhoff index)

▶ Assign unit electrical resistance to every edge. Resistance rvi ,vj between vertices vi
and vj .

▶ Kirchhoff index = average resistance

R(G ) :=
2

|VG |(|VG | − 1)

∑
v1<v2∈VG

rv1,v2 .

▶ Extremely fast to compute due to matrix linear algebra operations (∼ 100µs per
graph)
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Average resistance

(Colors = loop orders 5 . . . 18)

▶ Resistance approximation reaches σ
(
P
P̄

)
=: δ ≈ 5%.
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Cycles

▶ nj(G ) the total number of cycles of length j ∈ N contained in a graph G .

▶ n1 = n2 = 0, n3= number of triangles, n4=number of squares, . . .

▶ Triangles are a mediocre approximation, P almost uncorrelated with nj for j ≥ 4.
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Cycles

▶ Triangles are a mediocre approximation, P almost uncorrelated with nj for j ≥ 4.

▶ But: n3 and n4 together are good!

▶ ⇒ Use multi-linear function.

0 2 4 6 8 10 12
n3

3

4

5

6

ln 

Period as function of triangles, L=11

5 10 15 20 25
n4

3

4

5

6

ln 

Period as function of squares, L=11

Paul-Hermann Balduf, Waterloo & PI Weighted sampling of Feynman graphs 12

https://paulbalduf.com/research


Background and Motivation Approximation functions Results

Cycles
▶ Use multi-linear function of j-cycle count nj ,

ln P̄ := f0 +

jmax∑
j=3

fj
2j · nj
3j

.

▶ Approximation gets better with increasing jmax. Saturated at j ≈ 10, accuracy
δ ≈ 2%.
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Cuts

▶ A (minimal) cut C ⊆ EG separates the grap into exactly 2 connected components.
cj number of j-edge cuts. Consider multi-linear model of ln(cj).

▶ Can combine cuts and cycles. Reach δ ≈ 1.2% for all loop orders.
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Hepp bound.

▶ Hepp bound H(G ) [Hepp 1966; Panzer 2022] arises from “tropicalization” of
period integral upon sector decomposition.

▶ Strongly correlated with period. Polynomial function, combined with edge-cuts
ln(cj), gives δ ≈ 0.2%.

▶ Computation requires iteration over all subgraphs (and/or caching).
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Martin invariant

▶ kth order Martin invariant M [k] [Panzer and Yeats 2023] is derivative of O(N)
symmetry factor at N = −2 for a graph where every edge is replaced by k parallel
edges.

▶ Linear function of lnM [1] gives δ ≈ 4%, higher M [k] are much better. kth-order
polynomial of M [k] can get very accurate when cobined with cuts ln(cj), reach
δ ≪ 0.1%.

▶ Like Hepp, requires recurrence over decompositions and caching.

Paul-Hermann Balduf, Waterloo & PI Weighted sampling of Feynman graphs 16

https://paulbalduf.com/research


Background and Motivation Approximation functions Results

Machine learning models

Work by Kimia Shaban

▶ So far: Hand-picked, physically inspired quantities.

▶ Linear regression of all quantities simultaneously gives
δ ≈ 0.1%. Quadratic even better.
But: High computational cost.

▶ Trained artificial neural networks (graph convolutional network, graphSAGE) using
just the graph as input.

▶ Not accurate/reproducible enough for Monte Carlo sampling, but very fast once
trained.

▶ Machine learning challenge: The graph completely determines the period (perfect
accuracy is possible for a clever enough model). Data set freely available, see
paulbalduf.com/research.
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Speed vs. accuracy

▶ Recall: Sampling accuracy scales as 1√
n
δ, where n ∝ 1

ta
. ⇒ equivalent

approximations on lines δ ∝ t
− 1

2
a .

▶ Most models lie on δ ∝ t−1
a . I.e. the more accurate models are “more than

worth” their extra time. Still, Hepp and Martin are too slow for L > 14.

▶ ⇒ Cut & Cycle model is the most useful one for Monte-Carlo sampling.

(filled: 1 thread, hollow: 20 threads)
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Weighted sampling implementation details

▶ Generate random graphs, check for primitivity, compute “cuts & cycles”
prediction P̄

▶ Metropolis-Hastings sampling algorithm: Have graph G1. Generate x ∈ [0, 1]

uniformly. If P̄(G2)

P̄(G1)
> x , accept G2, else keep G1.

▶ In our case, sampling factor Ns ≈ 5000 approximations per integration was ideal

to balance accuracy of sampling
〈
P
P̄

〉
vs

〈
P̄
〉
sampling.

▶ Distribute 100 threads on prediction and integration dynamically.
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Example results: Primitive beta function for L = 14

▶ Reached 120ppm standard deviation after 24k CPU core h (< 2 weeks walltime).

▶ Previous work with uniform random sampling took 400k CPU core h for 1063ppm.

▶ ⇒ Weighted sampling is ≈ 1000× faster than uniform random sampling, or
reaches ≈ 35× the accuracy at the same runtime.
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Conclusion

▶ Feynman integrals are correlated to various properties of the graph.

▶ Some correlations are conceptually interesting (e.g. resistance). Often, ln(P) is a
multi-linear function.

▶ To approximate period P, we can reach approximation uncertainty δ < 2% easily,
δ ≈ 0.1% with some effort.

▶ Weighted sampling reduces the time for numerically computing the primitive beta
function by roughly a factor 103, but only for L ≥ 13 loops (otherwise, just
compute all graphs).
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Thank you!
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