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Background

» Perturbative quantum field theory in flat (Euclidean) D = 4 — 2¢ spacetime.

» Massless bosonic ¢*-theory

1 A
L= 50,00"¢ - =(¢°)"

= Feynman graphs have 1 type of edge, 1 type of 4-valent vertex.

» We want to compute the beta function of this theory.
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The beta function in ¢*-theory

» Describes change of the coupling when all energy scales are increased
2
simultaneously. Set £ :=In %, where p arbirary reference. Callan-Symanzik
equation for renormalized Green functions G(«, ¢) Callan 1970; Symanzik 1970:

86 (e, ) = (’y(a) + B(a)a@a>g(a, 0.

» Related to running coupling a(u) and coupling counterterm Z, via
_ d _ —
Bla) = m Ina(p, ag) = 7 |n(a26a(a,e))'
» Computed perturbatively from sum of vertex-type L-loop Feynman integrals F(G),

_ 9 F(G)
Bla) = -2 Z (—a)LHm-

4-valent graphs G
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Periods in ¢*-theory
» We consider only primitive (=no subdivergences) graphs G in D = 4 — 2e.

F(G) = const - (173(6)

T P(G) - £ + {-independent terms + O(G))
€

» First Symanzik polynomial ¢ z. Nontrivial part of integral is the period
[Broadhurst and Kreimer 1995; Schnetz 2010]

o0 |Ec|
o= 1!0/ oo ) o2 ©

» With the period, 9, F(G) = P(G). The primitive contribution to the beta
function is

rim _ P(G)
B (ar) =2 > (—Q)Lﬂm-

primitive 4-valent G
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Computing the primitive beta function

» Periods can be quickly (~ 1h/graph) computed numerically with new algorithm
up to L =~ 16 loops [Borinsky 2023; Borinsky, Munch, and Tellander 2023]

» Can exploit various symmetries, only a subset is truly independent [Schnetz 2010;
Panzer 2022; Hu et al. 2022]

» 2 Problems (see my talk on May 28):
» Number of graphs grows factorially, 750k at 13 loops, 950M at 16 loops =
impossible to compute all of them, need (random) sample, Monte Carlo algorithm.
» Standard deviation of distribution is large, o(P) ~ (P) = sample has large
statistical uncertainty, at sample size n
AgampP 1

1
%0(7’), = 7 = ﬁ

E.g. for 3 significant digits (Asamp < 0.1%) we need sample size n ~ 10°.

Asampp =

» Solution: Importance sampling of periods.
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Importance sampling for periods

» Idea of importance sampling: If we know a function P which approximates the
period and P is fast to compute, then:

1. Evaluate <75> in a large sample of size Ns - n.

2. Generate a smaller random sample S of n graphs weighted proportional to P.
Evaluate <%>5 in this sample.

3. Law of conditional probability:

ne @ G,
~——

large sample, fast
small sample, slow

» Total error is small if simultaneously § := 0(%) is small (high accuracy of

approximation) and N, >> 1 (approximation faster than numerical integration)
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Approximation functions

We examined ~ 150 different graph-theoretical quantities empirically, for a data set
[Balduf 2023, freely available] of ~ 1.5M periods with L < 18.

Recall that at fixed L, all graphs have the same number of edges and vertices and are
4-regular.
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Average vertex distance

» Count number of edges between all pairs of vertices, take average.

» Relatively fast to count, clearly correlated, but low accuracy d ~ 30%.

# as a function of the mean distance
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Average resistance (Kirchhoff index)

» Assign unit electrical resistance to every edge. Resistance ry, ,, between vertices v;
and v;.

» Kirchhoff index = average resistance

R(G) := VeVl =T >

vi<weVg

» Extremely fast to compute due to matrix linear algebra operations (~ 100us per
graph)
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Average resistance

Period as function of the average resistance, Log plot
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(Colors = loop orders 5 ... 18)

» Resistance approximation reaches a(%) =: 6 ~ 5%.
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Cycles

» nj(G) the total number of cycles of length j € N contained in a graph G.

» n = np =0, n3= number of triangles, ng=number of squares, ...
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Cycles

» nj(G) the total number of cycles of length j € N contained in a graph G.
» n = np =0, n3= number of triangles, ng=number of squares, ...

» Triangles are a mediocre approximation, P almost uncorrelated with n; for j > 4.

Period as function of triangles, L=11 Period as function of squares, L=11
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Cycles

Triangles are a mediocre approximation, P almost uncorrelated with n; for j > 4.
» But: n3 and n4 together are good!

» = Use multi-linear function.
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» Use multi-linear function of j-cycle count n;,

» Approximation gets better with increasing jmax. Saturated at j =~ 10, accuracy
0 ~2%.

Relative standard deviation as function of jy.., Log plot
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Cuts

» A (minimal) cut C C E¢ separates the grap into exactly 2 connected components.
¢j number of j-edge cuts. Consider multi-linear model of In(c;).
» Can combine cuts and cycles. Reach 6 ~ 1.2% for all loop orders.

Relative standard deviation of Cut + Cycle models, All graphs

5/ %

10-cycles

cuts + cycles
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Hepp bound.

» Hepp bound H(G) [Hepp 1966; Panzer 2022] arises from “tropicalization” of
period integral upon sector decomposition.

» Strongly correlated with period. Polynomial function, combined with edge-cuts
In(cj), gives § ~ 0.2%.

» Computation requires iteration over all subgraphs (and/or caching).

P as a function of H Relative standard deviation of Hepp models
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Martin invariant

» k™" order Martin invariant MK [Panzer and Yeats 2023] is derivative of O(N)
symmetry factor at N = —2 for a graph where every edge is replaced by k parallel
edges.

» Linear function of In MU gives § ~ 4%, higher MK are much better. kt™-order
polynomial of MKl can get very accurate when cobined with cuts In(c;), reach

§ < 0.1%.
» Like Hepp, requires recurrence over decompositions and caching.
Period as a function of Martin invariant, Double Log plot Cubic Martin+Cut model
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Machine learning models

» So far: Hand-picked, physically inspired quantities.

» Linear regression of all quantities simultaneously gives Work by Kimia Shaban
0 ~ 0.1%. Quadratic even better.
But: High computational cost.
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Machine learning models

» So far: Hand-picked, physically inspired quantities.

» Linear regression of all quantities simultaneously gives Work by Kimia Shaban
0 ~ 0.1%. Quadratic even better.
But: High computational cost.

» Trained artificial neural networks (graph convolutional network, graphSAGE) using
just the graph as input.

» Not accurate/reproducible enough for Monte Carlo sampling, but very fast once
trained.

» Machine learning challenge: The graph completely determines the period (perfect
accuracy is possible for a clever enough model). Data set freely available, see
paulbalduf.com /research.
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Speed vs. accuracy

1

» Recall: Sampling accuracy scales as %(5, where n o< ;. = equivalent
a

_1
approximations on lines § o t, 2.

Paul-Hermann Balduf, Waterloo & PI Weighted sampling of Feynman graphs 18



https://paulbalduf.com/research

Results
©0000

Speed vs. accuracy

» Recall: Sampling accuracy scales as %(5, where n tl = equivalent
a

_1
approximations on lines § o t, 2.

» Most models lie on & oc ;1. l.e. the more accurate models are “more than
worth" their extra time. Still, Hepp and Martin are too slow for L > 14.

» = Cut & Cycle model is the most useful one for Monte-Carlo sampling.

Performance of different approximations, L=10, N,=16000 Performance of different approximations, L=13, N=16000
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(filled: 1 thread, hollow: 20 threads)
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Weighted sampling implementation details

» Generate random graphs, check for primitivity, compute “cuts & cycles”
prediction P
» Metropolis-Hastings sampling algorithm: Have graph G;. Generate x € [0, 1]

: P(G2)
uniformly. If )

» In our case, sampling factor Ns; = 5000 approximations per integration was ideal

> x, accept Gy, else keep Gj.

to balance accuracy of sampling <%> VS <75> sampling.

» Distribute 100 threads on prediction and integration dynamically.
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Example results: Primitive beta function for L = 14
» Reached 120ppm standard deviation after 24k CPU core h (< 2 weeks walltime).

Convergence of gr™ L=14
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» Previous work with uniform random sampling took 400k CPU core h for 1063ppm.
» = Weighted sampling is =~ 1000 faster than uniform random sampling, or
reaches =~ 35x the accuracy at the same runtime.
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Conclusion

» Feynman integrals are correlated to various properties of the graph.

» Some correlations are conceptually interesting (e.g. resistance). Often, In(P) is a
multi-linear function.

» To approximate period P, we can reach approximation uncertainty 6 < 2% easily,
0 ~ 0.1% with some effort.

» Weighted sampling reduces the time for numerically computing the primitive beta
function by roughly a factor 103, but only for L > 13 loops (otherwise, just
compute all graphs).
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Thank you!
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