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What is a free field theory?

▶ Consider a field ϕ(x , t), i.e. a quantity whose value depends on “position” x and time t.
Denote partial derivatives by ∂x and ∂t .

▶ Naive intuition: The field will assume a state of “minimum energy”. This can’t be
because energy is conserved. Rather: The field will assume a state of stationary (often
minimum) action. Action density (=Lagranian) in the simplest case:

L =
1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2
.

▶ Stationary action means 0 = δ
∫
L dtdx , or

0 = δL =
∂ L
∂ϕ

− ∂

∂t

∂ L
∂(∂tϕ)

− ∂

∂x

∂ L
∂(∂xϕ)

⇒
(
∂2t − ∂2x

)
ϕ = 0.

▶ This equation of motion is linear in ϕ, hence it is a free field: Sums of solutions
ϕ1(x) + ϕ2(x) are solutions, too. They do not influence each other.
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What is an interacting field theory?

▶ An action density that is quadratic in the field ϕ gives rise to linear equations of motion
and hence a free field.

▶ As soon as L is more than quadratic, the equation of motion becomes non-linear. ⇒ sums
of solutions are not (necessarily) a solution any more, they interact. For example, energy
of 2 waves is no longer the sum of individual energies.

▶ We will only ever consider one type of interaction:

L =
1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2 − λ

4!
ϕ4.

When interpreted as a quantum field theory in 3-dimensional space (+ time),
this is called ϕ4-theory.
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Quantum field theory

▶ So far we considered classical field theory, where δL = 0. In quantum field theory, instead
all field configurations are weighted with exp

(
i
ℏ
∫
L dt dx

)
, where ℏ is the Planck

constant (=quantum of action).

▶ Quantum field is operator-valued. We no longer look for a solution “function” ϕ(x), but
instead, for correlation functions ⟨ϕ(x1)ϕ(x2) · · ·ϕ(xk)⟩.

▶ Can compute correlation functions of the free QFT analytically in terms of propagators,
time-ordered 2-point functions ⟨Tϕ(x)ϕ(y)⟩ = GF (x , y).

▶ For the interacting theory, use perturbation theory: expand the exponential as a power
series in the parameter λ of the λ

4!ϕ
4 interaction term.

▶ Notice the interaction term is local, it involves four factors of the field at the same point.
Hence, one power of λ amounts to interaction at one single point.
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Quantum field theory

▶ In quantum field theory, all field configurations are weighted with exp
(
i
ℏ
∫
L dt dx

)
.

▶ Propagator: time-ordered 2-point functions of free field ⟨Tϕ(x)ϕ(y)⟩ = GF (x , y).

▶ Perturbation theory: expand the exponential as a power series in the parameter λ of the
λ
4!ϕ

4 interaction term.

▶ The interaction term is local, and it involves four factors of the field. Hence, one power of
λ amounts to interaction at one single point.

▶ This situation can be depicted with Feynman graphs [Feynman 1949; Feynman 1948]. Every
interaction is a 4-valent vertex, every propagator is an edge. E.g. 4-point correlation
function:

free theory O(λ) O(λ2) O(λ3)

. . .

(each of them comes in multiple different orientations not shown here)

▶ Feynman graphs are graduated by “loop number” L ≥ 0 (=dimension of cycle space).
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Feynman integrals

▶ The series expansion of a correlation function in quantum field theory can be organized in
terms of Feynman graphs, e.g. the 4-point function

free theory O(λ) O(λ2) O(λ3)

▶ The interaction can happen anywhere ⇒ we need to integrate the position of each
interaction vertex over the whole spacetime.

▶ Typical experiments in QFT measure scattering, not spacial correlation. One typically
wants to compute a Fourier transform, i.e. Feynman integrals as functions of momenta,
not of positions. Every linearly independent cycle (“loop”) gives one integral over
undetermined momenta. However, we will use parametric integrals, where every edge gives
one integral.

▶ Generally, we need the sum over all possible graphs, not just individual graphs.

▶ Goal of this talk: Understand the “typical” properties of Feynman integrals.
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Periods in ϕ4-theory

▶ A Feynman integral depends on the momenta of all its external vertices, on masses of
particles, on conventions regarding normalization etc.

▶ For this talk, avoid renormalization issues and concentrate on the “simplest” case:
Vertex-type graphs without 2-valent or 4-valent subgraphs (i.e. cyclically 6-edge
connected graphs).
These graphs are primitive in the Hopf algebra of Feynman graphs [Kreimer 1998].

▶ We ignore the dependence on masses and angles, and only ask for the dependence on the

overall energy scale ℓ := p2

µ2 , where µ is an arbitrary reference momentum. These

(renormalized) integrals of a primitive vertex-type graph G have the form

F(G ) = −const · P(G ) · ℓ (+ ℓ− independent terms).

▶ The non-trivial coefficient P(G ) is called the period of the graph G [Broadhurst and Kreimer

1995; Schnetz 2010]. It is a finite real number.
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Periods in ϕ4-theory

▶ The renormalized integral of a primitive vertex-type graph G is

F(G ) = −const · P(G ) · ℓ (+ ℓ− independent terms).

▶ The non-trivial coefficient P(G ) is called the period of the graph G [Broadhurst and Kreimer

1995; Schnetz 2010]. It is a finite real number.

▶ P(G ) is a particular type of Feynman integral. Can be expressed in many forms, for
example with the first Symanzik polynomial ψG (=dual Kirchhoff polynomial):

P(G ) =

∏
e∈EG

∞∫
0

dae

 δ

1−
|EG |∑
e=1

ae

 1

ψ2
G ({ae})

∈ R.

▶ In this talk, periods of ϕ4-theory are the only type of Feynman integral
to be considered.
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Example: loop order 1

▶ Smalles nontrivial vertex-type graph: G =

e1

e2

(This is the only non-simple graph we will ever consider)

▶ Symanzik polynomial is the sum over spanning trees. Here, trees have only one edge,
T1 = {e1} and T2 = {e2}.

ψG =
∑

T spanning

∏
e /∈T

ae = a2 + a1.

▶ Period is

P(G ) =

∞∫
0

da1

∞∫
0

da2 δ(1− a1 − a2)
1

(a2 + a1)
2 =

1∫
0

da1
1

((1− a1) + a1)2
= 1.
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Example: loop order 2

▶ At loop order 2, graphs have 3 vertices, 4 internal edges and 4 external edges. Two
examples:

▶ No such graph is cyclically 6-edge connected. There are no primitives at L = 2.

▶ In fact, no graph that contains a multi edge as a subgraph is cyclically 6-edge connected
⇒ for L > 1, all primitive graphs are simple.
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Completions and decompletions

▶ The period P(G ) is defined for a vertex-type graph, i.e. G has 4 external edges. At L
loops, G has L+ 1 (internal) vertices.

▶ Merge the 4 external edges to a new vertex. The resulting graph has L+ 2 vertices and no
external edges. It is called the completion of G . Loop number or completion refers to L of
decompletion.

(completion) (3 non isomorphic decompletions)

▶ Every vertex-type G has a unique completion, but a single completion can have multiple
non-isomorphic decompletions.

▶ All decompletions G of some fixed completion have the same period P(G ). We will
therefore often work with completions.
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Example: loop order 3

▶ We saw: There are no primitive graphs with L = 2.

▶ There is exactly one primitive graph on L+ 2 = 5 vertices, K5 =

▶ All vertices in K5 are equivalent ⇒ removing any of them gives the same decompletion

G =

Paul Balduf, U Waterloo & PI Graph theory and Feynman integrals 12
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Example: loop order 3

G =

v1

v2v3

v4

e1e2

e3

e4

e5
e6

▶ Enumerating spanning trees is tedious. Better: Use matrix-tree theorem.
Labelled graph Laplacian:

L̃ =


−a1 − a2 − a3 a1 a2 a3

a1 −a1 − a4 − a5 a4 a5
a2 a4 −a2 − a4 − a6 a6
a3 a5 a6 −a3 − a5 − a6


▶ Leave out any one row and column to obtain reduced Laplacian L. Then the Kirchhoff

polynomial is

ψ̃G = det(L) = a1(a2 + a4)(a3 + a5) + a1(a2 + a3 + a4 + a5)a6 + . . .
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Example: loop order 3

G =
v1

v2v3

v4

e1e2

e3

e4
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▶ The Kirchhoff polynomial is

ψ̃G = det(L) = a1(a2 + a4)(a3 + a5) + a1(a2 + a3 + a4 + a5)a6 + . . .

▶ Symanzik polynomial ψ({ae}) = ψ̃
({

1
ae

}) ∏
e∈EG

ae

ψG = a1(a2 + a3)(a4 + a5) + a4a5a6 + a1(a2 + a3 + a4 + a5)a6 + a2a5(a4 + a6) + a3a4(a5 + a6) + a2a3(a4 + a5 + a6)

▶ Period integral can be solved with some effort,

P(G ) =

∏
e∈EG

∞∫
0

dae

 δ

1−
|EG |∑
e=1

ae

 1

ψ2
G ({ae})

= 6ζ(3) ≈ 7.212
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Summary of physics motivation and definitions

▶ Feynman graphs are a graphical notation for Feynman integrals. They appear in the
perturbative series-solution in interacing field theories.

▶ We concentrate on the special case of primitive vertex-type graphs in ϕ4-theory, these
graphs are 4-regular except for 4 external edges, and cyclically 6-edge connected.

▶ The Feynman integral of such a graph G is a real number, the period

P(G ) :=

∏
e∈EG

∞∫
0

dae

 δ

1−
|EG |∑
e=1

ae

 1

ψ2
G ({ae})

∈ R.

▶ The sum of all periods determines the scale-dependence of the theory, i.e. what happens if
all momenta and all masses of a theory are scaled by the same factor.

▶ The period integrand can be computed algorithmically from the Laplacian, but the
integral is hard to solve even for small graphs.

▶ Goal: Understand “typical” properties of periods and their underlying graphs.
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Theory with O(N)-symmetry

▶ So far we have considered a scalar theory, i.e. ϕ(x) ∈ R is a number.

▶ Relatively easy to generalize to vector theory where ϕ⃗(x) ∈ O(N) is a N-component
vector. Orthogonal group O(N) means that the theory is invariant under rotations of this
vector.

▶ Interaction term λ
4!ϕ

4 becomes λ
4! (ϕ⃗ · ϕ⃗)2.

▶ In terms of indices: ϕ⃗ · ϕ⃗ =
∑

j ϕjϕj . Graphically: Pairs of indices are connected, the 4
edges of a vertex can have at most 2 distinct indices. The vertex is the sum of 3 possible
ways to connect:

+ +

▶ For the entire graph: Sum over all such “vertex decompositions”. Obtain collection of
open and closed lines, exactly 3|VG | terms.

▶ Every closed line is a trace
∑

j 1j,j . Vector has N components ⇒ every closed line gives a
factor N.
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edges of a vertex can have at most 2 distinct indices. The vertex is the sum of 3 possible
ways to connect:

+ +

▶ For the entire graph: Sum over all such “vertex decompositions”. Obtain collection of
open and closed lines, exactly 3|VG | terms.

▶ Every closed line is a trace
∑

j 1j,j . Vector has N components ⇒ every closed line gives a
factor N.
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O(N) symmetry for vertex-type graphs

▶ Sum over all vertex decompositions. Obtain collection of open and closed lines. Every
closed line gives a factor of N.

▶ If the original graph was of vertex-type (=4 external edges), we obtain decompositions
with 4 external edges and possibly circuits.

4× +2× +2× +1×

▶ Summing over all orientations of a vertex-type graph, the sum of decompositions is
proportional to the decomposition of a single vertex.

+ + 8×

(
+ +

)

+1×

(
+ +

)
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Circuit partition polynomial

▶ Every circuit in a decomposition gives a summand N. Summing over all orientations of a
vertex-type graph G , the sum over all decompositions is proportional to that of a single
vertex.

▶ The constant of proportionality is called Circuit partition polynomial

J(G ,N) :=
∑

decompositions
of vertices in G

N#circuits in decomposition

▶ For example:

J
(

,N
)
= N + 8

▶ In the parturbation series, every Feynman integral F(G ) obtains a factor J(G ,N).

More about O(N) symmetry later. . .
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How many graphs are there?

Just generate them all and count...

Number grows factorially.
> 1 billion at 15 loops.

L
Primitive

decompletions
1 1
2 0
3 1
4 1
5 3
6 10
7 44
8 248
9 1,688

10 13,094
11 114,016
12 1,081,529
13 11,048,898
14 120,451,435
15 1,393,614,379
16 17,041,643,034
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Period Symmetries

▶ Know already: All decompletions of the same completion have the same period.

▶ There are a few other symmetries, where the period of non-isomorphic graphs has the
same value [Schnetz 2010; Panzer 2022; Hu et al. 2022].

▶ Planar dual graphs have the same period.
▶ In a 3-vertex cut, the period is the product of the two sides’ periods
▶ In a 4-vertex cut, can take the planar dual on either side or “twist” the connection at the

cut vertices.

▶ Write another program to try all of these and find symmetric graphs.
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Counts of primitive graphs

L
Vertex-type graphs
“decompletions”

Vacuum graphs
“completions”

planar
decompletions

independent
periods

3 1 1 1 1
4 1 1 1 1
5 3 2 2 1
6 10 5 5 4
7 44 14 19 9
8 248 49 58 31
9 1,688 227 235 134

10 13,094 1,354 880 819
11 114,016 9,722 3,623 6,197
12 1,081,529 81,305 14,596 55,196
13 11,048,898 755,643 60,172 543,535
14 120,451,435 7,635,677 246,573 5,769,143
15 1,393,614,379 82,698,184 1,015,339 65,117,118

⇒ Exploiting all symmetries, still millions of independent period integrals remain.
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Relation to random graphs on n = L+ 2 vertices

▶ Our primitive completions are 4-regular and cyclically 6-edge connected graphs.

▶ Consider space of random 4-regular simple graphs Gn,4 on n = L+ 2 vertices.

▶ Known for G ∈ Gn,4 in the limit n → ∞:

▶ G is almost surely 4-edge connected [Wormald 1981],

▶ asymptotic number of graphs in Gn,4 coincides with asymptotic number of primitive graphs
[Bender and Canfield 1978; Bollobás 1982; Borinsky 2017],

▶ ⟨|Aut(G)|⟩ → 1 [McKay and Wormald 1984], . . .

▶ ⇒ Expectation: To leading asymptotic order, Gn,4 is a good model for our graphs.

▶ We deal with graphs on n ≤ 20 vertices. Are we in the asymptotic region?
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Are we in the n → ∞ asymptotic region for Gn,4?

Symmetry factors ⟨|Aut(G )|⟩ → 1?
[McKay and Wormald 1984]

All decompletions non-isomorphic,〈
Drel

〉
→ 1?

∝L
-8

3 6 9 12 15

10-2

10-1

100

Correction to asymptotics, Double log plot

L

1-〈Drel〉

1-〈|Aut -1〉

⇒ asymptotic domain starts at n ∼ 10.

Cycles of length k are Poisson distributed

with mean X̃k := 3k

2k ? [Bollobás 1980;

McKay, Wormald, and Wysocka 2004]

k

〈nk〉

X k

L=7
L=18

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Number of k-cycles relative to their asymptotics

⇒ only good for short cycles where k ≪ n.

⇒ whether we are in the asymptotic domain depends on the details.
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Invariants

▶ We have seen that P is invariant under several symmetry operations on the graph. Which
other quantities are invariant?

Paul Balduf, U Waterloo & PI Graph theory and Feynman integrals 24

https://paulbalduf.com/research


Physics Definitions O(N) theory Counts and symmetries Invariants Distribution of periods Correlations Computing the beta function Conclusion

Cut invariants

▶ A vertex-induced cut C ⊆ EG separates the graph into exactly 2 connected components.
Let cj number of j-edge cuts.

▶ For primitive graphs: Only even j possible, and c2 = 0
and c4 = |VG |.

▶ c6 is a period invariant [Panzer unpublished].

▶ c8 can be made invariant with certain corrections,
potentially c10, too [B, Panzer, Yeats in progress].
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Hepp bound

▶ Hepp bound H(G ) [Hepp 1966; Panzer 2022] arises from “tropicalization” of period integral,
replacing Symanzik polynomial ψG .

H(G ) :=

∏
e∈EG

∞∫
0

dae

 δ

1−
|EG |∑
e=1

ae

 1

ψ2
G ,trop({ae})

∈ Q

ψG ,trop := maximum monomial of ψG .

▶ Which monomial is maximum depends on the particular values of edge variables {ae}.
Orderings of edge variables ↔ maximum monomials ↔ spanning trees.

▶ Each ordering of {ae} is called Hepp sector. P(G ) is the sum of all Hepp sector integrals.

▶ The Hepp sector integrals of H(G ) are over monomials ⇒ can be done analytically ⇒
recursive combinatorial formula for H(G ) without explicit integration.
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Martin invariant

▶ Recall the Circuit partition polynomial J(G ,N) for O(N)-valued fields.

▶ If G is a decompletion, the Martin invariant is the linear coefficient of the Martin

polynomial1 M(G ,N) := J(G ,N−2)
N−2 [Panzer and Yeats 2023].

▶ Linear coefficient = derivative, evaluated at zero ⇒ the value N = −2 of the
O(N)-symmetric field is combinatorially interesting.

▶ Replace every edge in G by k parallel edges, compute J and M, obtain “higher” Martin
invariant M [k].

▶ Like Hepp bound, can be computed by explicit combinatorial enumeration without any
integral

1trivial factors omitted.
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Summary: Counts, symmetries, invariants

▶ There are very many Feynman graphs. Their number grows factorially.

▶ Gn,4 is a reasonably good model for primitive graphs for n > 10.

▶ Not all non-isomorphic graphs have distinct periods, some are related by period
symmetries. Most importantly, completion symmetry.

▶ There are period invariants (other than the period itself) which respect the same
symmetries. We mentioned three: The number of 6- and 8-edge cuts, the Hepp bound
and the Martin invariant.

▶ The invariants are much easier to compute than the period itself.
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Computing periods numerically

▶ Periods can be quickly (∼ 1h/graph) computed numerically with new algorithm up to
L ≈ 16 loops [Borinsky 2023; Borinsky, Munch, and Tellander 2023]

▶ Use symmetries to improve accuracy and check programs. Use product symmetry to
obtain more periods.

▶ Computed all graphs including 13 loops, incomplete samples for L ≤ 18. Typical accuracy
4 digits (≈ 100ppm).

▶ ≈ 2 · 106 distinct completions (=vacuum graphs) computed, ≈ 33 · 106 decompletions
(=vertex graphs) known.
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Distribution of periods

▶ Most periods are somewhat close to the mean ⟨P⟩
▶ There are few, but extreme, outliers. Standard deviation σ(P) ≈ 100%⟨P⟩.
▶ The pattern of outliers repeats at each loop order, but scaled.

(a)12(b)12

(c)12

(d)12 (a)13(b)13

(c)13

(d)13

〈〉 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Distribution of periods, without symmetry factor, normalized to unit mean
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Continuous part of the distribution

▶ Distribution of (uniformly sampled) periods is none of the usual well-known distribution
functions.

▶ Can be modeled empirically with 5 free parameters.

▶ Shape of distribution is essentially unchanged at higher loop order, just scaled.

gamma

log normal

empirical

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.

0.2

0.4

0.6

0.8

1.

1.2

1.4

Distribution of  for L=13
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A curious observation

▶ The quantity 1√
P is almost normal distributed.

▶ I don’t know why.

incl symf.

without symf.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.
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Distribution of 
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Behavior of the mean
▶ Leading asymptotic growth of full beta function in MS from instanton calculation [McKane,

Wallace, and Bonfim 1984; McKane 2019] + conjecture that primitive graphs dominate MS +
asymptotics of number of graphs [Cvitanović, Lautrup, and Pearson 1978; Borinsky 2017] implies

⟨P⟩ ∼ C ·
(
3

2

)L+3

L
5
2 .

▶ Matches observed growth, potentially with different constant C .
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Which ones are the outliers?

▶ The zigzag graphs (= (1, 2)-circulants) and their cousins.

▶ They look “symmetric”, but that’s deceptive, overall only weak correlation between P and
symmetry factor.

largest −→ 4th largest
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Correlations

▶ There are very many periods at large loop order, it takes long to numerically compute all
of them.

▶ Can we guess their value with some simple function P̄(G )?

▶ The period of a graph G is correlated with many properties of G , we examined ∼ 150
distinct properties empirically.

▶ Measure of reached accuracy: relative standard deviation of the ratio P/P̄,

δ :=
σ
(P
P̄

)〈P
P̄

〉 = σ

(
P
P̄ −

〈P
P̄

〉〈P
P̄

〉 )
.

▶ Recall: At fixed L, all 4-regular graphs have the same number of edges and vertices.
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Average vertex distance

▶ Average of the shortest path between all pairs of vertices, where each edge has length 1.

▶ Relatively fast to count, clearly correlated, but low accuracy δ ≈ 30%.

▶ Note that the graphs of different loop order align. This correlation is universal across all
loop orders.
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Average resistance (Kirchhoff index)

▶ Consider a completion G .

▶ Assign unit electrical resistance to every edge.

▶ Resistance rvi ,vj between vertices vi and vj . Matrix of resistances can be computed from
the pseudoinverse L+ of the (unlabelled) Laplacian L,

ri,j = L
+
i,i + L

+
j,j − L

+
i,j − L

+
j,i .

▶ Kirchhoff index R(G ) = average resistance

⇒ R(G ) = 71
90
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Average resistance

(Colors = loop orders 5 . . . 18)

▶ Resistance approximation reaches δ ≈ 5% with linear fit.

▶ Nice interpretation: spatially “larger” (=less dense) graphs have larger periods.
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Cycles

▶ nj(G ) the total number of cycles of length j ∈ N contained in a graph G .

▶ Do not have to be mutually disjoint, or visit all vertices.

▶ For simple graphs: n1 = n2 = 0, n3= number of triangles, n4=number of squares, . . .
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Cycles

▶ P is somewhat correlated with n3, and almost uncorrelated with nj≥4.

▶ n3 and n4 together are good!

▶ ⇒ Multi-linear ansatz, scaled to the known asymptotic cycle count X̃j =
3j

2j from Gn,4:

ln P̄ := f0 +

jmax∑
j=3

fj
2j · nj
3j

.
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Cycles

▶ Multi-linear function of j-cycle count nj ,

ln P̄ := f0 +

jmax∑
j=3

fj
2j · nj
3j

.

▶ Approximation gets better with increasing jmax. Saturated at j ≈ 10, accuracy δ ≈ 2%.
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Other cycle models

▶ Non-linear functions of nj don’t improve accuracy

▶ n3, n4, n5 can be computed extremely fast from powers of adjacency matrix.

▶ Cycle polynomial Nt(G ) :=
∑|VG |

j=3 t jnj(G ).

▶ None of these are invariant under period symmetries, but N0.364 almost.

▶ lnP is approximately the same linear function of N0.364 for all loop orders!

ln P̄(G ) = 28.21 lnN0.364(G ) + 8.258.
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Cuts

▶ A (vertex-induced) cut C ⊆ EG separates the graph into exactly 2 connected components.
cj . . . number of j-edge cuts. Consider multi-linear model of ln(cj).

▶ Can combine cuts and cycles. Reach δ ≈ 1.2% for all loop orders.
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Hepp bound

▶ Hepp bound H(G ) [Hepp 1966; Panzer 2022] arises from “tropicalization” of period integral.

▶ Strongly correlated with period. Low order polynomial function, combined with edge-cuts
ln(cj), gives δ ≈ 0.2%.

▶ Computation requires iteration over all subgraphs (and/or caching).
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Martin invariant

▶ Martin invariant M [k] [Panzer and Yeats 2023] is derivative of O(N) symmetry factor (circuit
partition polynomial J(G ,N)) at N = −2 for a graph where every edge is replaced by k
parallel edges.

▶ Linear function of lnM [1] gives δ ≈ 4%, higher M [k] are much better. k th-order polynomial
of M [k] can get very accurate when cobined with cuts ln(cj), reach δ ≪ 0.1%.

▶ Like Hepp, requires recurrence over decompositions and caching.
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Machine learning models

Work by Kimia Shaban

▶ So far: Hand-picked, physically inspired quantities.

▶ Linear regression of all quantities simultaneously gives
δ ≈ 0.1%. Quadratic even better.
But: High computational cost.

▶ Trained artificial neural networks (graph convolutional network, graphSAGE) using just the
graph as input.

▶ Not as accurate/reproducible as correlation models so far, but very fast once trained.
Further work in progress.

▶ Machine learning challenge: The graph completely determines the period (perfect
accuracy is possible for a clever enough model).
Training data set freely available, see paulbalduf.com/research.
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Summary of correlations and predictions

▶ The period is correlated with a lot of quantities.

▶ Some of these correlations allow to predict the period to 1% accuracy within milliseconds.

▶ Some of them have nice intuitive interpretations (e.g. electrical properties, average
distance, etc), but there is hardly any rigorous theory why these things are correlated.

▶ Predicting periods from graphs alone is a challenge for machine learning models.

Now we know a lot of things about periods. Can we actually do something useful with this
knowledge?
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How can we use our new knowledge?

▶ The sum of all periods is the (primitive) beta function, which tells us something about
how a theory behaves under change of scale.

βprim
L (N) := 2

∑
completion G

L loops

4!(L+ 2) · J(G ,N) · P(G )

3L+2N(N + 2)|Aut(G )|
.

▶ Hard to compute. E.g. at L = 14, there are ∼ 108 periods. It takes months to compute
them all.

▶ Take a small n-element sample? Standard deviation δ(P) ≈ 100% means sampling
accuracy

∆samplingP
⟨P⟩

=
1√
n
δ(P) ≈ 1√

n
.

For 3 significant digits (∆samp < 0.1%) we need n ≈ 106.

▶ ⇒ exploit the correlations for a weighted sampling algorithm!
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Importance sampling for periods

▶ Idea of importance sampling: If we know a function P̄ which approximates the period and
P̄ is fast to compute, then:

1. Evaluate
〈
P̄
〉
in a large sample of size Ns · n.

2. Generate a smaller random sample S of n graphs weighted proportional to P̄. Evaluate〈P
P̄

〉
S
in this sample.

3. Law of conditional probability:

⟨P⟩ =
〈
P
P̄

〉
S︸ ︷︷ ︸

slow individually,
but small sample

·
〈
P̄
〉︸︷︷︸

large sample,
but fast individually

.

▶ First factor sampling accuracy is limited by δ := σ
(P
P̄

)
(i.e. accuracy of the prediction

function).

▶ Second factor sampling accuracy is limited by feasible Ns , i.e. by speed of the prediction
function P̄. Scales like 1√

Ns
∝

√
ta, where ta . . . approximation time for one graph.
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Speed of the predictions

▶ Implemented everything in C++, but often naive algorithms.

▶ Time ta for approximating one graph depends on model and loop order.

▶ Resistance and 5-cycles much faster than generating graphs, ∼ 10µs per graph.

▶ Cuts and cycles similar to generating graphs, ∼ 10ms per graph.

▶ Hepp and Martin much slower, grow faster than all other models, require caching.

▶ Most models reach δ ∝ t−1
a . Total accuracy scales like δ +

√
ta

⇒ more accurate models are “more than worth it”. Use cut + cycle model.
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Weighted sampling implementation details

▶ Generate random graphs, check for primitivity, compute cuts + cycles prediction P̄.

▶ Metropolis-Hastings sampling algorithm [Hastings 1970; Metropolis et al. 1953]: Have graph G1.

Generate x ∈ [0, 1] uniformly. If P̄(G2)

P̄(G1)
> x , accept G2, else keep G1.

▶ Integrate only one in Ns graphs. Maintain a queue of graphs to be integrated while
simultaneously generating and weighting new ones.

▶ The program distributes a fixed number of threads threads to the various tasks
dynamically, depending on available memory. Chooses sampling factor Ns appropriately.
Typically Ns ≈ 5000 approximations per integration was ideal to balance accuracy of
sampling

〈P
P̄

〉
vs
〈
P̄
〉
sampling.
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Example results: Primitive beta function for L = 14

▶ Reached 120ppm standard deviation after 24k CPU core h (< 2 weeks walltime).

▶ Previous work with uniform random sampling took 400k CPU core h for 1063ppm.
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Primitive beta function for L = 15

▶ Reached 200ppm standard deviation after 18k CPU core h ≈ 10 days walltime. Previous
work with uniform sampling: 1341ppm after 214k CPU core h.

▶ ⇒ Weighted sampling is ≈ 1000× faster than uniform random sampling, or reaches
≈ 35× the accuracy at the same runtime.
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O(N) dependence

▶ Using our results for P, we can also compute the beta function of the O(N)-symmetric
theory.

▶ Leading order behavior of J(G ,N), and leading graphs for given L, can be identified
[B, Thürigen in progress].

▶ Derivative at N = −2 is M [1]. Appears to be oscillating with zeros close to
N ∈ {−4,−6,−8, . . .} .
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Conclusion

▶ We have considered a model quantum field theory, ϕ4-theory in 4 dimensions, and within a
particular class of Feynman graphs, the primitives. The Feynman integral of a primitive
graph is a period.

▶ The number of graphs grows factorially with loop order. The period enjoys symmetries,
but they reduce the count moderately, but have interesting combinatorics and invariants.

▶ Random graphs Gn,4 are a fairly good model for large primitive graphs.

▶ O(N)-symmetry involves the circuit partition polynomial, has interesting properties (e.g.
Martin invariant, zeros).

▶ Periods follow an “asymptotic” distribution which has a smooth central part but large
outliers.

▶ The value of the period is correlated with various properties of the graph. Some
correlations are physically interesting (e.g. resistance). Often, ln(P) is a multi-linear
function. Accuracy of δ ∼ 1% can typically be reached.

▶ The approximations can be used for a weighted sampling algorithm. This is 1000× faster
than uniform sampling.

Don’t forget to join Mastodon! @paulbalduf@mathstodon.xyz
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