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Connes-Kreimer Hopf algebra
▶ Hopf algebra H spanned by forests of rooted trees, i.e. generated by rooted trees

•, •
• , •

•
• ,

•
•
• , . . . over Q

, where

▶ Multiplication m : H×H → H is disjoint union,
▶ Unit 1 : Q→ H, where the empty tree is identified with 1 ∈ H,
▶ Counit 1̃ : H → Q is 0 except for H ∋ q1 7→ q ∈ Q,
▶ Coproduct is sum over admissible cuts c that separate the root Rc from the pruned part Pc ,

∆[h] = h ⊗ 1+ 1⊗ h +
∑

∅̸=c∈C

Pc [h]⊗ Rc [h].

▶ Notation: Action on Hopf algebra [h] for h ∈ H, ordinary argument (x).
▶ Graded by number of vertices, connected ⇒ antipode S follows recursively from ∆ by

∆S [h] = (S ⊗ S) flip∆[h] and S [1] = 0. Concretely

S [h] = −h −
∑

∅≠c∈C

S
(
Pc [h]

)
Rc [h].

▶ Distinct drawings of the same tree are equivalent (i.e. not plane trees).

▶ In real physics, vertices are decorated, but not in this talk.
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∅≠c∈C

S
(
Pc [h]

)
Rc [h].

▶ Distinct drawings of the same tree are equivalent (i.e. not plane trees).

▶ In real physics, vertices are decorated, but not in this talk.

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 2

https://paulbalduf.com/research


Combinatorial DSEs Differential equation for single insertion Multiple insertion places Renormalization schemes Conclusion

Connes-Kreimer Hopf algebra
▶ Hopf algebra H spanned by forests of rooted trees, i.e. generated by rooted trees

•, •
• , •

•
• ,

•
•
• , . . . over Q, where

▶ Multiplication m : H×H → H is disjoint union,
▶ Unit 1 : Q→ H, where the empty tree is identified with 1 ∈ H,
▶ Counit 1̃ : H → Q is 0 except for H ∋ q1 7→ q ∈ Q,
▶ Coproduct is sum over admissible cuts c that separate the root Rc from the pruned part Pc ,

∆[h] = h ⊗ 1+ 1⊗ h +
∑
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Connes-Kreimer Hopf algebra, example

▶ Let ∆[h] = h ⊗ 1+ 1⊗ h + ∆̃[h].

∆[•] = • ⊗ 1+ 1⊗ •, ∆̃[•] = 0, S [•] = − • .

▶ If ∆̃[h] = 0, then h is called primitive. • is the only primitive tree.

▶ A non-primitive tree:

∆̃
[

•
•
•
]
= 2 • ⊗ •

• + • • ⊗•,

S
[

•
•
•
]
= − •

•
• − (S ⊗ id)∆̃

[
•
•
•
]
= − •

•
• + 2 • •

• − • • •.

▶ Multiplicativity ∆[h1h2] = ∆[h1]∆[h2] implies

∆
[
• • · · · •︸ ︷︷ ︸
n factors

]
=

n∑
j=0

(
n

j

)
• • · · · •︸ ︷︷ ︸
n−j factors

⊗• • · · · •︸ ︷︷ ︸
j factors

.
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Hochschild cocycle

▶ Operator B+ : H → H “adds a new root”. E.g.

B+[1] = •, B+[• • •] = •
•
•• , B+

[
•
•
•
]
=

•
•
•

•
.

▶ B+ is a Hochschild 1-cocycle,

∆B+[h] = B+[h]⊗ 1+ (id⊗B+)∆[h].

▶ The Connes-Kreimer Hopf algebra H together with B+ is universal among Hopf algebras
with a 1-cocycle:

Theorem (Universal property [Connes and Kreimer 1999])
If A is a connected graded Hopf algebra, and Λ a Hochschild 1-cocycle on A, then there is a
unique bialgebra morphism ϕ : H → A such that ϕB+ = Λϕ.
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Rooted trees and Feynman graphs

▶ For our physical application, a rooted tree is a symbol for a certain Feynman graph.

▶ We start from some primitive “kernel” graph Γ, symbolized by •, then “inserting subtrees”
below • amounts to inserting subgraphs into Γ.

▶ In this talk, mostly consider the kernel

Γ =

e1

e2

▶ This graph is a quantum correction to a propagator (has 2 external legs). Can insert it
into one of the internal edges e1, e2. For now, insert into e1 only.
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Example: Ladder trees / Rainbows

▶ Operator B+(γ) inserts γ into the lower edge of Γ.

▶ For every order n (=number of vertices), there is 1 ladder tree
•·
·•
•

n , and there is 1

rainbow Feynman graph Rn.

R1=̂• = B+(1) R2=̂ •
• = B+(•) R3=̂ •

•
• = B+( •

• )
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Example: Corollas / Chains

▶ Product m : H⊗H → H means “join at external leg” (in this simple case).

▶ Product • • · · · •︸ ︷︷ ︸
n factors

maps to chain of multiedge graphs Cn.

Cn = · · ·

γ1 γ2 γn
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Example: A more complicated graph

▶ C2 is the chain of two multiedges. Corresponds to •• ∈ H.

▶ B+[••] = •
•
• corresponds to the shown graph, where C2 is inserted into the lower edge

of the kernel.
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Characters

▶ A character ϕ is a morphism H → A into some algebra A, i.e.

ϕ
[
h1 · h2︸ ︷︷ ︸

multiplication in H

]
= ϕ[h1] · ϕ[h2]︸ ︷︷ ︸

multiplication in A

▶ Characters are a group, with operation “convolution product”

(ϕ1 ⋆ ϕ2)[h] := mA(ϕ1 ⊗ ϕ2)∆[h].

▶ Inverse: ϕ−1 := ϕS , then ϕ−1 ⋆ ϕ = 11̃.

▶ σ is an infinitesimal character if σ[h1 · h2] = σ(h1) · 1̃[h2] + σ(h2) · 1̃[h1].
▶ If σ is an infinitesimal character, then exp⋆(σ) := 1̃+ σ + 1

2σ ⋆ σ + . . . is a character.
All characters are of this form (e.g. [Cartier and Patras 2021]).
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Feynman rules
▶ Feynman rules FR are a character. They map to power series (=the binomial coalgebra)

in variable L = ln p2

s0
. Notation FR[X ](L) for X ∈ H.

▶ Being a character is a physical axiom: (Probability) amplitude of independent processes
should be product, FR[X1X2] = FR[X1]FR[X2]

▶ These are renormalized Feynman rules, FR[X ] = (R ◦ F ◦ S ⋆ F)[X ] (more on that later).

▶ Infinitesimal Feynman rules σ, related via

FR[X ](L) = exp⋆(Lσ)[X ] = 1̃[X ] + σ[X ]L+
1

2
(σ ⋆ σ)[X ]L2 + . . .

σ[X ] :=
∂

∂L
FR[X ]

∣∣∣
L=0

.

▶ Under Feynman rules, the cocycle B+ maps to an integral operator, the Feynman integral.
schematically

FR

[
B+[γ]

]
(L) = (1−R)

∫
dk K (L, k)FR[γ](k).

Function K (L, k) is the integrand of the kernel graph Γ.
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Analytical Dyson-Schwinger equations

▶ Fundamental quantum principle: All processes that can take place, will take place
(simultaneously).

▶ In particular: 2-point function must be inserted into every edge of every Feynman graph.

▶ Integral equation for the renormalized Green function GR(α, L) as a power series in
expansion parameter α. Called analytical DSE.

▶ We leave out all (infinitely many) but the very first one kernel graph

GR = 1 + α(1−R)
f (GR)

f denotes some function to be discussed in the following.

▶ On the level of rooted trees, “inserting into itself” means that we have a fixed-point
equation for some object X (α) ∈ H under the insertion operator B+. Called combinatorial
DSE, where FR[X (α)](L) =: GR(α, L).
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Combinatorial Dyson-Schwinger equation

▶ Recall B+[γ] means “attach γ below a new root”.

▶ Let X (α) be a formal power series (parameter α) with coefficients in H. Expected
structure:

X (α) = 1+ αB+

[
f [X ]

]
.

Which function f can we take?

▶ Recall renormalized Feynman rules FR[X ] = (RFS ⋆ F)[X ], i.e. left side of coproduct
determines counterterm.

▶ Physically: Interpret counterterm as reparametrization, must consist of “the same” series
as X itself (“multiplicative renormalizability”).

▶ More precisely: If X (α) =
∑

n α
nxn, the xj should generate a sub Hopf algebra

(i.e. be closed under coproduct).
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Sub Hopf algebras from combinatorial DSEs

Theorem ([Foissy 2008])
Let X (α) = αx1 + α2x2 + . . .. Then, the Dyson-Schwinger equation X = 1+ αB+

[
f [X ]

]
generates a sub Hopf algebra in exactly two cases:

1. X = 1+ αB+

[
X 1+w

]
for w ∈ R, and then

∆X (α) =
∞∑
n=0

Xwn+1(α)⊗ αnxn,

2. or X = 1+ αB+

[
eX−1

]
, in which case

∆X (α) = X (α)⊗ 1+
∞∑
n=1

e(X−1)n ⊗ αnxn.

All physically known DSEs fall into the first case, with w small positive or negative integers
(or maybe half-integers).
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The exponential DSE, order 0

X (α) = 1+ αB+

(
eX (α)−1

)

▶ Series solution starts with

X = 1 + . . .

▶ Exponential:

eX−1 = e0+... = 1 + . . .

▶ Coproduct:

∆X = 1⊗ 1+ . . .

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 14
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The exponential DSE, order 1

X (α) = 1+ αB+

(
eX (α)−1

)

▶ Series solution starts with

X = 1 + •α+ . . .

▶ Exponential:

eX−1 = eα•+... = 1 + •α+ . . .

▶ Coproduct:

∆X = 1⊗ 1+ •α⊗ 1+ α1⊗ •+ . . .
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The exponential DSE, order 2

X (α) = 1+ αB+

(
eX (α)−1

)

▶ Series solution starts with

X = 1 + •α+ •
• α2 + . . .

▶ Exponential:

eX−1 = 1 + •α+

(
•
• +

1

2
• •
)
α2 + . . .

▶ Coproduct:

∆X = X ⊗ 1+ α(1+ α •+ . . .)⊗ •

+ α2(1+ . . .)⊗ •
• + . . .
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The exponential DSE, Order 4

X (α) = 1+ αB+

(
eX (α)−1

)
▶ Series solution starts with

X = 1 + •α+ •
• α2 +

(
•
•
• +

1

2 •
•
•

)
α3 +

(
••
•• +

1

2 •
•
•

•
+ •

•
••

+
1

3! •
•
••

)
α4 + . . .

▶ Exponential:

eX−1 = 1 + •α+

(
•
• +

1

2
• •
)
α2 +

(
•
•
• +

1

2 •
•
• + • •

• +
1

6
•••
)
α3 + . . .

▶ Coproduct:

∆X = X ⊗ 1+ α

(
1+ α •+α2

(
•
• +

1

2
• •
)
+ α3

(
•
•
• +

1

2 •
•
• + • •

• +
1

6
•••
))

⊗ •

+α2
(
1+ 2α •+α2

(
2 •

• + ••
))

⊗ •
• + α3(1+ 3α•)⊗

•
•
• + α3

(
1

2
1+

3

2
•
)
⊗ •

•
• + . . .

= X ⊗ 1+ eX−1 ⊗ αx1 + e2(X−1) ⊗ α2x2 + e3(X−1) ⊗ α3x3 + . . .
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Polynomial DSEs

X (α) = 1+ αB+

[
Xw+1(α)

]
▶ w = 0 (linear DSE) leads to ladder trees (rainbow Feynman graphs)

X (α) = 1+ α •+α2
•
• + α3

•
•
• + . . . =

∞∑
n=0

αn

•·
·•
•

n

▶ w = −1 is a trivial-non-recursive DSE: X (α) = 1+ αB+(1) = 1+ α•. Physically, this
gives just the kernel graph •, without inserting anything

▶ w = −2 means inserting 1
X (α) . This is for propagator corrections (i.e. inserting geometric

series). For w = −2, X (α) is the sum of all rooted trees.

▶ Any w that is not an integer ≥ −1 leads to a sum of all rooted trees with some weighting.
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Renormalization group equation for polynomial DSE
▶ Consider the Feynman rules at a shifted energy scale L+ δ,

FR[X ](δ + L) = e⋆σ(δ+L)[X ] =
(
e⋆σδ ⋆ e⋆σL

)
[X ] = m

(
FR(δ)⊗FR(L)

)
∆[X ]

▶ Compute derivative w.r.t. δ at the point δ = 0, obtain differential equation.

▶ Use known coproduct ∆[X ] for DSE solutions.

▶ Encounter running coupling α̃(L) = αGw
R(α, L). Introduce renormalization group functions

γ(α) := ∂LGR(α, L)
∣∣∣
L=0

, β(α) = ∂Lα̃(α, L)
∣∣∣
L=0

= wαγ(α).

▶ Find Callan-Symanzik equation [Callan 1970; Symanzik 1970], define D = (1 + wα∂α)

∂LGR(α, L) = (γ(α) + β(α) · ∂α)GR(α, L) = γ(α)DGR(α, L).

▶ Expand GR(α, L) =: 1 +
∑

j γj(α)L
j , then

γ1(α) = γ(α), γk(α) =
1

k
γ(α)Dγk−1(α).

Details e.g. [Bergbauer and Kreimer 2006].
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Exponential DSE vs polynomial DSE

▶ DSE

X = 1+ αB+(X
w+1)

▶ running coupling

α̃ = αGw
R, β(α) = wαγ(α)

▶ Callan-Symanzik equation

∂LGR(α, L) = (γ(α) + β(α) · ∂α)GR(α, L)

▶ Expansion functions, D = (1+wα∂α)

γ1 = γ, γk =
1

k
γDγk−1

▶ DSE

X = 1+ αB+

(
eX−1

)
▶ running coupling

α̃ = αeGR−1, β(α) = αγ(α)

▶ “Callan-Symanzik equation”

∂LGR(α, L) = γ(α) + β(α)∂αGR(α, L).

(May consider Y := eGR = eQR [Foissy 2008])

▶ Expansion functions, D = α∂α

γ1 = γ, γk =
1

k
γDγk−1
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Summary so far

▶ A Dyson-Schwinger equation is a mathematical formalization of the “quantum principle”.
For us, its validity is an axiom.

▶ Consistent multiplicative renormalization requires that the solution of the DSE generates a
sub Hopf algebra. Another axiom.

▶ This leaves two possible forms of DSE

X = 1+ αB+

(
Xw+1

)
, or X = 1+ αB+

(
eX−1

)
.

▶ They lead to slightly different renormalization group equations, operator either
D = 1 + wα∂α or D = α∂α. In both cases

γ1 = γ, γk =
1

k
γDγk−1

for the expansion

GR(α, L) = 1 +
∞∑
n=1

γn(α)L
n.
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B+ as integral operator

▶ Developed over 25 years Broadhurst and Kreimer 2000; Broadhurst and Kreimer 2001; Kreimer and

Yeats 2006; Kreimer 2008; Yeats 2008; Yeats 2011; Kreimer and Panzer 2013; Balduf 2024.

▶ Recall B+ means “insertion of subgraphs”. BΓ
+(γ) is a Feynman integral of the primitive

graph Γ, where a subgraph γ has been inserted.

▶ E.g. concretely for insertion of γ into 1-loop multiedge Γ =

F
[
BΓ
+(γ)

]
(p2) =

γ
=

∫
dDk

(2π)D
1

k2
F [γ](k2)

1

(p + k)2
.

▶ FR[γ](k2) is proportional to (k2)−ℓϵ. Inserting γ is equivalent to changing the power of
k2 in the integral.

▶ Integral where edges have arbitrary propagator powers, Mellin transform FΓ(ρ) =
∑

k ckρ
k

F
[
BΓ
+(FR[γ])

]
(L) = −FR[γ](∂ρ)e

LρFΓ(ρ)
∣∣∣
ρ=0

.
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Mellin transform of the 1-loop multiedge

Γ =

1− ρ1

1− ρ2

▶ Mellin transform ≈ Feynman integral F [Γ] in analytic regularization, propagator powers
νe = 1− ρe , evaluated at p2 = s0. Leave out all inessential prefactors

F [Γ](s) ∝
∫

dDk

(2π)D
1

(p2)1−ρ1

1

((p + k)2)1−ρ2

∣∣∣
p2=s0

∝
∞∫
0

da1

∞∫
0

da2 a
−ρ1

1 a−ρ2

2

exp
(
− a1a2s

a1+a2

)
(a1 + a2)

D
2

=
Γ
(
−ρ1 − ρ2 + 2− D

2

)
Γ
(
D
2 − 1 + ρ1

)
Γ
(
D
2 − 1 + ρ2

)
Γ(D − 2 + ρ1 + ρ2)Γ(1− ρ1)Γ(1− ρ2)

=: FM(1)(ρ1, ρ2).

▶ Insert only into e1 (set ρ2 = 0). Evaluate at D = 4 or D = 6.

FM(1)(ρ, 0)
∣∣∣
D=4

=
−1

ρ(1 + ρ)
, FM(1)(ρ, 0)

∣∣∣
D=6

=
1

ρ(1 + ρ)(2 + ρ)(3 + ρ)
.
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From combinatorial DSE to differential equation in 4 steps
1. Kinematic renormalization (MOM) amounts to subtraction at L = 0, therefore

FR

[
BΓ
+(γ)

]
(L) = −FR[γ](∂ρ)

(
eLρ − 1

)
FΓ(ρ)

∣∣∣
ρ=0

.

2. Use this in DSE FR[X ] = 1 + αFR
[
B+[X

1+w ]
]

GR(α, L) = 1− α
(
G 1+w
R (α, ∂ρ)e

LρF (ρ)− G 1+w
R (α, ∂ρ)F (ρ)

)∣∣∣
ρ=0

. (∗)

3. Use ∂k
Le

Lρ = ρkeLρ and therefore

eLρ =
1

F (ρ)
· F (ρ)eLρ =

1

F (∂L)
· F (ρ)eLρ.

4. Apply this differential operator to both sides of the DSE (∗), use Callan-Symanzik
equation ∂LGR = γDGR, extract order zero in L

1

ρ · F (ρ)

∣∣∣
ρ→γD

γ(α) = −α.
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DSE in MOM as ODE

▶ ODE for anomalous dimension, where D = 1 + wα∂α or D = α∂α and F̄ (ρ) = ρF (ρ)

1

F̄ (ρ)

∣∣∣
ρ→γD

γ(α) = −α.

▶ Can compute 100s of terms in power series solution.

▶ E.g. Multiedge in 4D F (ρ) = −1
ρ(1+ρ) for w = −2

(1 + γ(1− 2α∂α))γ = α ⇒ γ(α) = α+ α2 + 4α3 + 27α4 + 248α5 + . . .

▶ Unless w = −1 or w = 0, series is divergent.

▶ Exponential DSE: Series solution of γ = α− αγγ′ is known as [OEIS A088716]

γ(α) = α− α2 + 3α3 − 14α4 + 85α5 − 621α6 + 5236α7 ∓ . . . =
∑
n

cnα
n

cn ∼ S · (−1)n+1Γ(n + 1)
(
1 +O

(
n−1
))
.

Stokes constant S ≈ 0.21795 . . ..
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▶ E.g. Multiedge in 4D F (ρ) = −1
ρ(1+ρ) for w = −2

(1 + γ(1− 2α∂α))γ = α ⇒ γ(α) = α+ α2 + 4α3 + 27α4 + 248α5 + . . .

▶ Unless w = −1 or w = 0, series is divergent.

▶ Exponential DSE: Series solution of γ = α− αγγ′ is known as [OEIS A088716]

γ(α) = α− α2 + 3α3 − 14α4 + 85α5 − 621α6 + 5236α7 ∓ . . . =
∑
n

cnα
n

cn ∼ S · (−1)n+1Γ(n + 1)
(
1 +O

(
n−1
))
.

Stokes constant S ≈ 0.21795 . . ..
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Transseries approach to asymptotics

▶ Have perturbative solution of ODE,

γ(α) =:
∞∑
n=1

cnα
n,

▶ Ansatz for non-perturbative part [Borinsky, Dunne, and Meynig 2021; Borinsky and Dunne 2020]

γnon-pert(α) = αµ(w) exp

(
λ(w)

α

)(
1 + b(1)(w)α+ b(2)(w)α2 + . . .

)
.

▶ Insert γ(α) = γpert(α) + γnon-pert(α) into ODE, for 4D model

(1 + γ(α)(1 + wα∂α))γ(α) = α.

▶ Expand in powers of γnon-pert(α). Obtain equations for parameters of γnon-pert(α).
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Transseries parameters for 4D model

▶ Insert ansatz

γnon-pert(α) = αµ(w) exp

(
λ(w)

α

)(
1 + b(1)(w)α+ b(2)(w)α2 + . . .

)
.

▶ Find parameters as functions of w

λ(w) =
1

w
, µ(w) = −3 + 2w

w
, b(1)(w) =

(1 + w)(1 + 3w)

w
,

b(2)(w) =
(1 + w)(1 + 5w + 3w2 − 5w3)

2w2
,

b(3)(w) =
(1 + w)(1 + 5w − 4w2 − 20w3 + 45w4 + 81w5)

6w3
, . . .

▶ Corresponding asymptotic growth:

cn ∼ S(w) · 1

(−λ(w))n
· Γ
(
n − µ(w)

)(
1 +

−λ(w) · b(1)(w)

(n − µ− 1)
+ . . .

)
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Stokes constant for 4D model

▶ Stokes constant S(w) in cn ∼ S(w) · 1
(−λ(w))n · Γ

(
n − µ(w)

)
(1 + . . .)

Determined numerically from series coefficients [Balduf 2024]

▶ Note smooth limit S → 0 as w → 0+ to linear DSE, divergence w → 0−.

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 28

https://paulbalduf.com/research


Combinatorial DSEs Differential equation for single insertion Multiple insertion places Renormalization schemes Conclusion

Stokes constant for 4D model

▶ Stokes constant S(w) in cn ∼ S(w) · 1
(−λ(w))n · Γ

(
n − µ(w)

)
(1 + . . .)

Determined numerically from series coefficients [Balduf 2024]

▶ Note smooth limit S → 0 as w → 0+ to linear DSE, divergence w → 0−.

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 28

https://paulbalduf.com/research


Combinatorial DSEs Differential equation for single insertion Multiple insertion places Renormalization schemes Conclusion

Resummation of 4D model

▶ How can we understand this?

▶ Perturbative “solution” is asymptotic power series ⇒ is not a “solution” in the physical
sense, gives no finite prediction.

▶ ODE is of first order, has 1 free boundary condition

(1 + γ(α)(1 + wα∂α))γ(α) = α.

▶ Note that ∂αγ = 1
wγ(α)·α

(
α− γ − γ2

)
is singular at the origin.

▶ More details and systematic resummation in [Borinsky and Dunne 2020; Borinsky, Dunne, and

Meynig 2021; Borinsky and Broadhurst 2022].
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Analytic solutions of 4D model

X = 1 + αB+[X
w+1] γ + γ(1 + wα∂α)γ = α

▶ For w = −1, the DSE is not even recursive. Kernel graph is exact solution, γ(α) = α.

▶ For w = 0, algebraic equation instead of ODE, exact solution γ =
√
1+4α−1

2 (red line).
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Asymptotic series solution for w = −2

▶ For w = −2, (divergent) perturbative series starts with
γ(α) = α+ α2 + 4α3 + 27α4 + 248α5 + 2830α6.

▶ “Physical” domain for this model is α < 0 since we used X = 1+ αB+

[
X 1+w

]
.
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Resummed solution for w = −2

▶ Resummed exact solution from [Broadhurst and Kreimer 2001].
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Numerical solutions for w = −2

▶ Notable qualitative difference between α > 0 (all solutions exponential small as α → 0)
and α < 0 (exponentially large).

▶ Linear DSE solution (red curve) is locus of vanishing derivative of γ(α) [Yeats 2008].
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Numerical solutions for w = −1 (trivial DSE)

▶ Physically, the solution at w = −1 is unique: γ(α) = α.

▶ The ODE has many other solutions. They look qualitatively similar to other w .

▶ Again, linear solution gives locus of ∂αγ = 0.
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Numerical solutions close to w = 0

▶ Recall exotic behavior of Stokes constant near w = 0.

▶ Again, linear solution w = 0 gives locus of ∂αγ = 0.

▶ Crossing w = 0, the slope “flips” ⇒ qualitative change of resurgence functions.
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Numerical solutions for w = +1

▶ w = +1 would be a vertex DSE, physical at α > 0.

▶ Now, solutions at α < 0 are exponentially small for α → 0.
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Numerical solutions for exponential DSE

▶ Recall ODE is γ + γα∂αγ = α instead of γ + γ(1 + wα∂α)γ = α.

▶ Resembles w > 0 case, but not equal to any w .

▶ Locus of ∂αγ = 0 no longer given by linear DSE (red), but by trivial DSE (green).
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Transseries parameters for 6D model
▶ Linearizing in γnon-pert(α) results in polynomial equation, degree equals degree of ODE.

▶ 4D-model: First order ODE ⇒ unique transseries parameters (as functions of w)

▶ 6D-model: 3rd-order ODE

(3 + γ(1 + wα∂α))(2 + γ(1 + wα∂α))(1 + γ(1 + wα∂α))γ = −α.

▶ 3 distinct sets of solutions as functions of w [Balduf 2023]

λ⃗(w) =

(
− 6

w
,−12

w
,−18

w

)
, µ⃗(w) =

(
−35 + 29w

6w
,−5 + 2w

3w
,−15 + 13w

2w

)
b⃗(1)(w) =

(
275 + 267w − 8w2

6 · 62w
,
−265− 624w − 359w2

3 · 62w
,
−85− 241w − 156w2

2 · 62w

)
.

▶ Fluctuations b(k) around leading instanton (largest λ) are subleading corrections to
perturbative asymptotics.

▶ Exponentials don’t directly correspond to a full non-perturbative solution due to
resonance: The λ are always integer multiples of each other.
Analyzed in [Borinsky, Dunne, and Meynig 2021; Borinsky and Broadhurst 2022].
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A simplified toy model that isn’t simpler
▶ Rational Mellin transform appears to be coincidence for the 1-loop single-insertion

massless multiedges.

▶ Consider Kreimer’s toy model [Connes and Kreimer 1999; Panzer 2012]

F
[
B+[t]

]
(s) :=

∞∫
0

dx
x−ϵ

x + s
F [t](x).

▶ Mellin transform

F (ρ) =

∞∫
0

dx
xρ

x + 1
=

−π

sin(πρ)
= −1

ρ
exp

( ∞∑
n=1

ζ(2n)
ρ2n

n

)
= −1

ρ
− π2

6
ρ− 7π4

360
ρ3 + . . . .

▶ Same DSE as always, X = 1 + αB+[X
1+w ]. ODE is a pseudo differential equation

sin(πu)

πu

∣∣∣
u→γ(1+wα∂α)

γ(α) = −α.

▶ Empirically: µ(w) = − 2+w
w , Stokes constant S(−2) = π

2 , some other values [Balduf 2023].
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Conclusions for single-insertion DSEs

▶ Whenever we know the Mellin transform of the kernel graph, we can immediately write
down a pseudo differential equation that determines γ(α) perturbatively (in the MOM
scheme) [Balduf 2024].

▶ Have exact solutions for 4D model for the some choices w , among them the physically
relevant w = −2 [Broadhurst and Kreimer 2001; Yeats 2008].

▶ Excellent understanding of the resurgence behavior for the 4D and 6D models
[Borinsky, Dunne, and Meynig 2021; Borinsky and Dunne 2020; Borinsky and Broadhurst 2022].

▶ Variations:

▶ Changing the parameter w changes numerical values of resurgence parameters e.g. location
and nature of Borel poles, . . .

▶ Parameters are discontinuous when crossing w = 0, otherwise fairly smooth.
▶ Changing the kernel Feynman rules changes the ODE, non-rational case makes systematic

analysis harder, but has only little influence on factorial growth of asymptotic series (?)
▶ Exponential DSE behaves qualitatively similar to positive w case.
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Multiple insertion places

▶ Consider a single kernel, but E ≥ 1 distinct insertion places. The DSE is then
[Kreimer and Yeats 2006; Yeats 2008; Nabergall 2022; Olson-Harris 2024]

γ(α) = 1 + αG 1+w1(α, ∂ρ1) · · ·G 1+wE (α, ∂ρE
)F̄ (ρ1, . . . , ρE )

∣∣∣
ρ⃗=0⃗

.

▶ In the combinatorial DSE, one needs to distinguish the places (i.e. use B+ with multiple
arguments) [Olson-Harris 2024].

▶ No longer possible to write explicit ODE for γ(α), but can use γk = 1
k γ(α)Dγk−1(α):

GR(α, L) = 1 +
∞∑
k=1

γk(α)L
k = 1 +

∞∑
k=1

1

k!
Lk(γ(α)D)k = eLγ(α)D = 1 +

eLγD − 1

D
γ(α).

(Recall D = 1 + wα∂α or D = α∂α)
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Example: Insertion into E = 2 places

GR = 1 + α(1−R)
G 1+w1

R

G 1+w2

R

▶ Series expansion of Mellin transform

(ρ1 + ρ2) · F (ρ1, ρ2) = F̄ (ρ1, ρ2) =:
∞∑

n1=0

∞∑
n2=0

fn1,n2ρ
n1
1 ρn22 .

▶ Expand all series to obtain ODE explicitly:

γ = 1− α

(
1 +

e∂ρ1
γD − 1

D
γ(α)

)(
1 +

e∂ρ2
γD − 1

D
γ(α)

)
F̄ (ρ)

= 1− α

(
1 + γ∂ρ1 +

1

2
γDγ∂2

ρ1
+ . . .

)(
1 + γ∂ρ2 +

1

2
γDγ∂2

ρ2
+ . . .

)
F̄ (ρ1, ρ2)

= 1− αf0,0 + α(f0,1 + f1,0)γ + α(f2,0 + f0,2)Dγ + αf1,1γ
2 + α(f3,0 + f0,3)γDγDγ + α(f2,1 + f1,2)γ

2Dγ +O
(
γ4
)

▶ This gives an ODE, but not necessarily the best one (consider example F̄ (ρ) = 1
1−ρ ).
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Double insertion asymptotics
▶ Growth encoded by quantity P(α) := γ1 + 2γ2 = γ − γDγ.

[Yeats 2008; van Baalen et al. 2009; van Baalen et al. 2010]

▶ Extensive work on the double insertion DSE, approximate differential equations, and Borel
plane formulations [Bellon and Schaposnik 2008; Bellon 2010a; Bellon 2010b; Bellon and Schaposnik

2013; Bellon and Clavier 2014; Bellon and Clavier 2015; Bellon and Clavier 2017; Bellon and Russo 2021a;

Bellon and Russo 2021b]

Idea: Formally

eγD∂ρ F̄ (ρ)
∣∣∣
ρ=0

= F̄ (γD).

▶ Then do partial fraction decomposition, introduce auxiliary power series for
1

γD−k =
∑

( 1k γD)n, truncate after leading poles of F̄ (ρ1, ρ2, . . .), obtain coupled ODEs.

▶ For double insertion in 4D (Wess-Zumino model), w1 = w2 = −2:

cn ∼ S · (−3)nΓ

(
n +

2

3

)
.

(compare single insertion w = −2 has (−2)nΓ
(
n + 1

2

)
, and w = −3 has (−3)nΓ(n + 1)).
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▶ For double insertion in 4D (Wess-Zumino model), w1 = w2 = −2:

cn ∼ S · (−3)nΓ

(
n +

2

3

)
.

(compare single insertion w = −2 has (−2)nΓ
(
n + 1

2

)
, and w = −3 has (−3)nΓ(n + 1)).
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Asymptotic growth parameters of double insertion DSE

▶ Setting w1 = −1 means “no insertion here”, reproduces single-insertion case.

▶ Function looks fairly smooth except for w = 0
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Asymptotic growth parameters of double insertion DSE

▶ Setting w1 = −1 means “no insertion here”, reproduces single-insertion case.

▶ Again, case wj = 0 is regular unless w1 = w2 = 0.

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 45

https://paulbalduf.com/research


Combinatorial DSEs Differential equation for single insertion Multiple insertion places Renormalization schemes Conclusion

Conclusion for multiple insertion places

▶ Can still obtain ODE, but defined “implicitly”.

▶ Systematic analysis requires study of poles of Mellin transform, partial results exist, but far
less systematic than 4D and 6D model single insertion.

▶ Numerically, growth parameters change mildly when second insertion is included.

▶ Non-smooth behavior near wj = 0 or wj = −1.
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Renormalization schemes

▶ Recall the counter term SF
R [X ] := RFS [X ].

▶ A renormalization scheme is a choice of renormalization operator R such that

▶ The Rota-Baxter equation is fulfilled,

R
(
f (x)g(x)

)
+R(f (x))R(g(x)) = R

(
R(f (x))g(x)

)
+R

(
f (x)R(g(x))

)
,

▶ and for every primitive graph Γ, the renormalized Feynman rules (id−R)F [Γ](L) are finite.

▶ Most notably, Kinematic renormalization (MOM) amounts to setting R := F(X )(L = 0)
for all X ̸= 1, such that FR(X )(L = 0) = 11̃.

▶ When working in a regularization scheme that has a regulator ϵ, such that for primitive
divergent graphs F [X ] has a pole in ϵ, then Minimal subtraction (MS) is defined as
projection to pole parts, R′ := F(X )|only pole terms in ϵ.
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A more algebraic perspective

▶ Let R be kinematic renormalization, i.e. evaluation at L = 0.
By definition FR[X ](L = 0) = 0 unless X = 1.

▶ Let R′ be any renormalization scheme. Define τ : H → R as “extraction of the value at
L = 0”, namely

τ [X ] = FR′ [X ](L = 0) = R ◦ FR′ [X ], τ [1] = 1.

▶ Non-kinematic renormalized Feynman rules are still multiplicative with respect to graph
products, FR′ [X1 · X2](L) = FR′ [X1](L) · FR′ [X2](L) (follows from Rota-Baxter).

▶ τ is a character, because FR′ is. τ and σ together determine FR′ :

FR′ [X ](L) = τ ⋆ e⋆Lσ[X ].

▶ Hence, no longer ⋆-multiplicative under change of scale:

FR′ [X ](L1 + L2) = (FR′(L1) ⋆ FR(L2))[X ] ̸= (FR′(L1) ⋆ FR′(L2))[X ].
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Properties of MOM and MS

▶ Consider DimReg in both cases for easy comparison, L = ln p2

s0
as always.

▶ In MOM with renormalization point L = 0

▶ GR(α, ϵ, L = 0) = 1. (for all ϵ)
▶ γ(α) = ∂LGR(α, ϵ, L)

∣∣
L=0

, similar for β.
▶ β(α, ϵ) and γ(α, ϵ) depend on ϵ

▶ In MS:

▶ Counter terms are only poles in ϵ, no finite parts.
▶ β′(α, ϵ) = β(α) and γ′(α, ϵ) = γ(α) (for all ϵ)
▶ GR(α, ϵ, L = 0) = γ0(α, ϵ) a priori unknown

▶ The first coefficients of γ and γ′ agree, analogous for β and β′, leading counter term pole,
leading log coefficient (all these quantities are determined by period of the kernel graph).
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Choosing the right definition of the renormalization group functions

In MOM, the renormalization group functions β(α) and γ(α) simultaneously satisfy:

1. They are the L-derivative of GR or QR at L = 0.

2. They are the coefficients in the Callan-Symanzik equation.

3. If Q = Gw
R in the DSE, then β = wαγ.

4. The beta function is the derivative of the renormalized coupling α(α0) with respect to the
reference scale s0 at fixed α0.

5. The Z -factors are integrals of the renormalization group functions, or equivalently, β and
γ are derivatives of the Z -factors.
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Choosing the right definition of the renormalization group functions

In MS, the renormalization group functions β(α) and γ(α) simultaneously satisfy:

1. They are the L-derivative of GR or QR at L = 0.

2. They are the coefficients in the Callan-Symanzik equation.

3. If Q = Gw
R in the DSE, then β = wαγ.

4. The beta function is the derivative of the renormalized coupling α(α0) with respect to the
reference scale s0 at fixed α0.

5. The Z -factors are integrals of the renormalization group functions, or equivalently β and γ
are derivatives of the Z -factors.

⇒ Define β and γ from the Z -factors to get consistent properties in all schemes. In DimReg,
this produces γ(α, ϵ), finite as ϵ → 0.
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Definition
In dimensional regularization, and for all renormalization schemes, the ϵ-dependent
renormalization group functions are defined as derivatives of the counterterms Z :

β′(α, ϵ) :=
−ϵ

∂α ln(α · Zα(α, ϵ))
+ αϵ

γ′(α, ϵ) := −(β′(α, ϵ)− αϵ)∂α lnZ (α, ϵ).

▶ These functions satisfy, in all renormalization schemes and also for ϵ ̸= 0,

∂

∂L
GR(α, ϵ, L) =

(
γ(α, ϵ) + (β(α, ϵ)− αϵ)

∂

∂α

)
GR(α, ϵ, L).

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 52

https://paulbalduf.com/research


Combinatorial DSEs Differential equation for single insertion Multiple insertion places Renormalization schemes Conclusion

Renormalization schemes for DSE solutions

▶ We have two power series:

1. Anomalous dimension γ. In MOM, conicides with infinitesimal Feynman rule
σ(GR) = ∂LGR

∣∣
L=0

= γ1(α, ϵ).

2. Evaluation τ(GR) = GR
∣∣
L=0

= γ0(α, ϵ). In MOM, is constant unity.

γ1(α, ϵ) = γ(α, ϵ)Dγ0(α, ϵ).

▶ Conceptually, the DSE is a complicated relation between these two functions.
A renormalization scheme is an (arbitrary) choice of either one of these power series.

▶ Instead of γ0(α, ϵ), can equivalently use δ(α, ϵ) defined as τ = exp⋆(δσ). Is a shift of L:

FR′(L) = τ ⋆ e⋆σL = e⋆δσ ⋆ e⋆Lσ = e⋆(L+δ)σ.

▶ Thm: In perturbation theory, any renormalization scheme coincides with MOM, where the
renormalization point is not L = 0 but L = −δ(α, ϵ) [Balduf 2023].

(This is only guaranteed to work if the RGE holds.)
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Shifted RGE functions

▶ “Hopf-algebraic” equations are perfectly concrete: Let γ be anomalous dimension in
MOM, and γ′ in another scheme, related by shift δ, then [Balduf 2023]

γ′(α) =
γ′
1(α)

γ”0(α) + wα∂αγ′
0(α)

,
γ(α)

γ′(α)
= 1 + wγ(α)α∂αδ(α).

▶ In particular: solutions of linear DSEs

▶ have the same anomalous dimension in all schemes at ϵ = 0
▶ are multiplied with an overall L-independent function γ0(α) where

γ′(α, ϵ) = γ(α, ϵ) + ϵ∂α ln γ0(α, ϵ).

▶ MS-scheme: γ′(α, ϵ) = γ(α) independent of ϵ ⇒ can infer [ϵ0]γ′
0(α, ϵ) of MS from

[ϵ1]γ(α, ϵ) of MOM
▶ Exact solution of linear DSE in MS in 4D model, where γ = 1

2
(
√
1 + 4α− 1) [Balduf 2024]

ln γ′
0(α) = ln

γ

α
− 1

4
ln(1 + 4α)− 2γγE + ln

Γ(1− γ)

Γ(1 + γ)
, δ(α) =

ln γ′
0

γ
.
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Nonlinear 4D model in MS

▶ No exact solution known in MS for nonlinear DSE w ̸= 0.

▶ Can compute shift function δ =
∑∞

j=0 djα
j to order ≈ 30. E.g. for 4D model, w = −2

δ(α) = −2− 3

2
α− 29

6
α2 −

(
94

3
− 1

3
ζ(3)

)
α3 − . . . .

▶ Find empirically

dn ∼ wS(w) · (−w)n · Γ(n − µ(w)− 1).

Here, S(w), µ(w) are the same coefficients as for anomalous dimension γ(α), i.e. −dn
cn+1

∼ 1.

▶ Can determine many more parameters [Balduf 2024], upshot: γ′(α) in MS, or equivalently
shift of renormalization point δ(α), are asymptotic power series very similar to γ(α) in
MOM.
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Double insertion DSE in MS vs MOM

▶ Shown is the asymptotic growth of the function γ1(α) in both schemes.

▶ Similar shape, but not identical numerical values.
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Conclusion 1:
What have we learned in the 25 years since [Broadhurst and Kreimer 1999]?

▶ [Broadhurst and Kreimer 2001] gave the exact solution for single insertion D = 4.

▶ For uncoupled DSEs, only two types are physically sensible:
X = 1 + αB+(X

1+w ) or X = 1 + αB+(e
X−1).

▶ Exponential DSE has received little attention so far.

▶ The linear DSE, w = 0, can be solved exactly both in MOM and MS.

▶ The perturbative solution in MOM for ϵ = 0 can be computed from a (pseudo-)ODE, for
any w .

▶ If the Mellin transform is known, we can generate the ODE algorithmically. When
inserting into only one place, we can write the ODE down in closed form.

▶ Resurgence analysis and overall good understanding of the physically sensible case
w = −2 for the D = 4 and D = 6 models.

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 57

https://paulbalduf.com/research


Combinatorial DSEs Differential equation for single insertion Multiple insertion places Renormalization schemes Conclusion

Conclusion 1:
What have we learned in the 25 years since [Broadhurst and Kreimer 1999]?

▶ [Broadhurst and Kreimer 2001] gave the exact solution for single insertion D = 4.

▶ For uncoupled DSEs, only two types are physically sensible:
X = 1 + αB+(X

1+w ) or X = 1 + αB+(e
X−1).

▶ Exponential DSE has received little attention so far.

▶ The linear DSE, w = 0, can be solved exactly both in MOM and MS.

▶ The perturbative solution in MOM for ϵ = 0 can be computed from a (pseudo-)ODE, for
any w .

▶ If the Mellin transform is known, we can generate the ODE algorithmically. When
inserting into only one place, we can write the ODE down in closed form.

▶ Resurgence analysis and overall good understanding of the physically sensible case
w = −2 for the D = 4 and D = 6 models.

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 57

https://paulbalduf.com/research


Combinatorial DSEs Differential equation for single insertion Multiple insertion places Renormalization schemes Conclusion

Conclusion 1:
What have we learned in the 25 years since [Broadhurst and Kreimer 1999]?

▶ [Broadhurst and Kreimer 2001] gave the exact solution for single insertion D = 4.

▶ For uncoupled DSEs, only two types are physically sensible:
X = 1 + αB+(X

1+w ) or X = 1 + αB+(e
X−1).

▶ Exponential DSE has received little attention so far.

▶ The linear DSE, w = 0, can be solved exactly both in MOM and MS.

▶ The perturbative solution in MOM for ϵ = 0 can be computed from a (pseudo-)ODE, for
any w .

▶ If the Mellin transform is known, we can generate the ODE algorithmically. When
inserting into only one place, we can write the ODE down in closed form.

▶ Resurgence analysis and overall good understanding of the physically sensible case
w = −2 for the D = 4 and D = 6 models.

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 57

https://paulbalduf.com/research


Combinatorial DSEs Differential equation for single insertion Multiple insertion places Renormalization schemes Conclusion

Conclusion 1:
What have we learned in the 25 years since [Broadhurst and Kreimer 1999]?

▶ [Broadhurst and Kreimer 2001] gave the exact solution for single insertion D = 4.

▶ For uncoupled DSEs, only two types are physically sensible:
X = 1 + αB+(X

1+w ) or X = 1 + αB+(e
X−1).

▶ Exponential DSE has received little attention so far.

▶ The linear DSE, w = 0, can be solved exactly both in MOM and MS.

▶ The perturbative solution in MOM for ϵ = 0 can be computed from a (pseudo-)ODE, for
any w .

▶ If the Mellin transform is known, we can generate the ODE algorithmically. When
inserting into only one place, we can write the ODE down in closed form.

▶ Resurgence analysis and overall good understanding of the physically sensible case
w = −2 for the D = 4 and D = 6 models.

Paul Balduf, U Oxford & PI Variations of single-kernel Dyson-Schwinger equations 57

https://paulbalduf.com/research


Combinatorial DSEs Differential equation for single insertion Multiple insertion places Renormalization schemes Conclusion

Conclusion 2: What have we learned from the “variations”?

▶ Changing the exponent w in X = 1 + αB+

[
X 1+w

]
changes all resurgence parameters

(location and types of poles in Borel plane), but smoothly unless w = 0.

▶ At w = 0, solution “flips sign”, discontinuity of parameters is unsurprising.

▶ Inserting into the second edge makes ODE much more complicated, involves ζ(n), ODE is
of infinite order. Still, leading resurgence parameters are mostly continuous in exponents
w1,w2 and take similar values to single-insertion.

▶ Change of renormalization scheme is equivalent to shifting L → L− δ(α, ϵ). Of the two
functions γ(α, ϵ) and δ(α, ϵ), one can be chosen freely.

▶ The non-linear DSEs have distinct renormalization group functions in distinct schemes.
Qualitatively, MOM and MS are very similar: both divergent power series with similar
factorial growth.

▶ In particular, the series can not be made convergent by change of scheme.

⇒ qualitative features of the solution (not necessarily of the methods) are relatively stable
under “variations”.
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Thank you!

By the way, Mastodon is a social network
like Twitter, but open-source and

with elephants instead of birds!

@paulbalduf@mathstodon.xyz
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